Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
High-Yield Large-Scale Suspended Graphene Membranes over Closed Cavities for Sensor Applications
ACS Nano ( IF 15.8 ) Pub Date : 2024-09-08 , DOI: 10.1021/acsnano.4c06827 Sebastian Lukas 1 , Ardeshir Esteki 1 , Nico Rademacher 2 , Vikas Jangra 1 , Michael Gross 1 , Zhenxing Wang 2 , Ha-Duong Ngo 3 , Manuel Bäuscher 4 , Piotr Mackowiak 4 , Katrin Höppner 4 , Dominique J Wehenkel 5 , Richard van Rijn 5 , Max C Lemme 1, 2
ACS Nano ( IF 15.8 ) Pub Date : 2024-09-08 , DOI: 10.1021/acsnano.4c06827 Sebastian Lukas 1 , Ardeshir Esteki 1 , Nico Rademacher 2 , Vikas Jangra 1 , Michael Gross 1 , Zhenxing Wang 2 , Ha-Duong Ngo 3 , Manuel Bäuscher 4 , Piotr Mackowiak 4 , Katrin Höppner 4 , Dominique J Wehenkel 5 , Richard van Rijn 5 , Max C Lemme 1, 2
Affiliation
Suspended membranes of monatomic graphene exhibit great potential for applications in electronic and nanoelectromechanical devices. In this work, a “hot and dry” transfer process is demonstrated to address the fabrication and patterning challenges of large-area graphene membranes on top of closed, sealed cavities. Here, “hot” refers to the use of high temperature during transfer, promoting the adhesion. Additionally, “dry” refers to the absence of liquids when graphene and target substrate are brought into contact. The method leads to higher yields of intact suspended monolayer chemical vapor deposition (CVD) graphene and artificially stacked double-layer CVD graphene membranes than previously reported. The yield evaluation is performed using neural-network-based object detection in scanning electron microscopy (SEM) images, ascertaining high yields of intact membranes with large statistical accuracy. The suspended membranes are examined by Raman tomography and atomic force microscopy (AFM). The method is verified by applying the suspended graphene devices as piezoresistive pressure sensors. Our technology advances the application of suspended graphene membranes and can be extended to other two-dimensional materials.
中文翻译:
用于传感器应用的封闭腔体上的高产大规模悬浮石墨烯膜
单原子石墨烯悬浮膜在电子和纳米机电设备中表现出巨大的应用潜力。在这项工作中,“热干”转移工艺被证明可以解决封闭、密封腔体顶部大面积石墨烯膜的制造和图案化挑战。这里的“热”是指在转印过程中使用高温,促进粘合。另外,“干燥”是指当石墨烯和目标基板接触时不存在液体。与之前报道的相比,该方法可以产生更高的完整悬浮单层化学气相沉积 (CVD) 石墨烯和人工堆叠双层 CVD 石墨烯膜的产率。使用扫描电子显微镜 (SEM) 图像中基于神经网络的目标检测进行产量评估,以较高的统计精度确定完整膜的高产量。通过拉曼断层扫描和原子力显微镜(AFM)检查悬浮膜。通过将悬浮石墨烯器件用作压阻压力传感器来验证该方法。我们的技术推进了悬浮石墨烯膜的应用,并且可以扩展到其他二维材料。
更新日期:2024-09-08
中文翻译:
用于传感器应用的封闭腔体上的高产大规模悬浮石墨烯膜
单原子石墨烯悬浮膜在电子和纳米机电设备中表现出巨大的应用潜力。在这项工作中,“热干”转移工艺被证明可以解决封闭、密封腔体顶部大面积石墨烯膜的制造和图案化挑战。这里的“热”是指在转印过程中使用高温,促进粘合。另外,“干燥”是指当石墨烯和目标基板接触时不存在液体。与之前报道的相比,该方法可以产生更高的完整悬浮单层化学气相沉积 (CVD) 石墨烯和人工堆叠双层 CVD 石墨烯膜的产率。使用扫描电子显微镜 (SEM) 图像中基于神经网络的目标检测进行产量评估,以较高的统计精度确定完整膜的高产量。通过拉曼断层扫描和原子力显微镜(AFM)检查悬浮膜。通过将悬浮石墨烯器件用作压阻压力传感器来验证该方法。我们的技术推进了悬浮石墨烯膜的应用,并且可以扩展到其他二维材料。