当前位置:
X-MOL 学术
›
ACS Energy Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Chemo-electrochemical Evolution of Cathode–Solid Electrolyte Interface in All-Solid-State Batteries
ACS Energy Letters ( IF 19.3 ) Pub Date : 2024-09-05 , DOI: 10.1021/acsenergylett.4c02062 Patrick J. Kwon 1, 2 , Carlos Juarez-Yescas 1, 2, 3 , Hyewon Jeong 1, 2 , Saeed Moradi 1, 2, 4 , Elizabeth Gao 5 , Debbie Lawrence 5 , Beniamin Zahiri 1, 2 , Paul V. Braun 1, 2, 3, 4, 6
ACS Energy Letters ( IF 19.3 ) Pub Date : 2024-09-05 , DOI: 10.1021/acsenergylett.4c02062 Patrick J. Kwon 1, 2 , Carlos Juarez-Yescas 1, 2, 3 , Hyewon Jeong 1, 2 , Saeed Moradi 1, 2, 4 , Elizabeth Gao 5 , Debbie Lawrence 5 , Beniamin Zahiri 1, 2 , Paul V. Braun 1, 2, 3, 4, 6
Affiliation
The stability of the interface between the cathode and the solid electrolyte (SE) has been found to be a key determinant of solid-state battery (SSB) performance. While interfacial failure from electrochemical cycling has been studied, temperature effects on the chemical and electrochemical evolution of interface properties are not well-understood. We utilize a dense additive-free LiCoO2 cathode, which provides controlled morphology and crystallography, and well-known high voltage halide SEs (Li3InCl6 and Li3YCl6) to eliminate the need for cathode coating to explore the nature of interface deterioration induced by operating at up to 100 °C. By promoting temperature-induced accelerated interfacial failure, we show that at elevated temperatures (>60 °C) and higher states of charge, a significant chemo-electrochemical contribution to interfacial resistance results in rapid cell performance degradation. Our findings show that beyond the well sought-after SE electrochemical voltage stability, the atomic-scale restructuring of the cathode surface interfaced with the SE must be considered when designing stable interfaces.
中文翻译:
全固态电池中阴极-固体电解质界面的化学电化学演变
阴极和固体电解质 (SE) 之间界面的稳定性已被发现是固态电池 (SSB) 性能的关键决定因素。虽然已经研究了电化学循环引起的界面失效,但温度对界面特性的化学和电化学演变的影响尚不清楚。我们利用致密的无添加剂 LiCoO2 阴极,提供受控的形态和晶体学,以及众所周知的高压卤化物 SE(Li3InCl6 和 Li3YCl6),无需阴极涂层即可探索在高达 100 °C 下操作引起的界面劣化的性质。 通过促进温度诱导的加速界面失效,我们表明在高温 (>60 °C) 和较高的电荷状态下,对界面电阻的显着化学电化学贡献导致电池性能快速下降。我们的研究结果表明,除了广受欢迎的 SE 电化学电压稳定性之外,在设计稳定的界面时,还必须考虑与 SE 界面的阴极表面的原子级重构。
更新日期:2024-09-05
中文翻译:
全固态电池中阴极-固体电解质界面的化学电化学演变
阴极和固体电解质 (SE) 之间界面的稳定性已被发现是固态电池 (SSB) 性能的关键决定因素。虽然已经研究了电化学循环引起的界面失效,但温度对界面特性的化学和电化学演变的影响尚不清楚。我们利用致密的无添加剂 LiCoO2 阴极,提供受控的形态和晶体学,以及众所周知的高压卤化物 SE(Li3InCl6 和 Li3YCl6),无需阴极涂层即可探索在高达 100 °C 下操作引起的界面劣化的性质。 通过促进温度诱导的加速界面失效,我们表明在高温 (>60 °C) 和较高的电荷状态下,对界面电阻的显着化学电化学贡献导致电池性能快速下降。我们的研究结果表明,除了广受欢迎的 SE 电化学电压稳定性之外,在设计稳定的界面时,还必须考虑与 SE 界面的阴极表面的原子级重构。