当前位置:
X-MOL 学术
›
Mech. Syst. Signal Process.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Design and characterization of a wind-adaptable piezoelectric energy harvester utilizing a rigid-flexible compound blunt body
Mechanical Systems and Signal Processing ( IF 7.9 ) Pub Date : 2024-09-07 , DOI: 10.1016/j.ymssp.2024.111913 Zemeng Yang , Yucun Zhang , Zhe Li , Shijie Lin , Yiqun Gu , Weilin Liao , Zhonghua Zhang , Junwu Kan
Mechanical Systems and Signal Processing ( IF 7.9 ) Pub Date : 2024-09-07 , DOI: 10.1016/j.ymssp.2024.111913 Zemeng Yang , Yucun Zhang , Zhe Li , Shijie Lin , Yiqun Gu , Weilin Liao , Zhonghua Zhang , Junwu Kan
In response to the challenges posed by uncontrolled amplitude during galloping and narrow effective bandwidth during vortex-induced vibrations in current energy harvesters, a novel wind-adaptable piezoelectric energy harvester utilizing a rigid-flexible compound blunt body (W-APEH) is proposed. The rigid-flexible compound blunt body improves environmental adaptability and power generation capacity. During the transformation process of the rigid-flexible compound blunt body from a Y-shape to an r-shape, a vibration pattern changes from galloping to coupled vibration, then to vortex-induced vibration. The feasibility of the structure and principle of the W-APEH were proved through a series of simulations and experiments. The higher proportion of rigid wings within a blunt body increases the susceptibility to galloping. A larger windward angle will delay the occurrence of galloping in the W-APEH, shorten the time of coupled vibration, and reduce the output voltage. In the case of the flexible wing thickness remains below 0.3 mm, an increase in thickness leads to an extended galloping time, with vortex-induced vibrations occurring later. Specifically, the onset wind speed is only 3.5 m/s, and the working wind speed range is 5–21 m/s with appropriate structural dimensions. Furthermore, the W-APEH provides a maximum output power of 3.78 mW at an optimal load resistance of 250 kΩ.
中文翻译:
利用刚柔复合钝体的风适应压电能量采集器的设计和表征
针对当前能量采集器中舞动过程中振幅失控和涡激振动过程中有效带宽窄所带来的挑战,提出了一种利用刚柔复合钝体(W-APEH)的新型风适应压电能量采集器。刚柔复合钝体提高了环境适应性和发电能力。刚柔复合钝体由Y形向R形转变过程中,振动模式由驰动振动转变为耦合振动,再转变为涡激振动。通过一系列的仿真和实验,证明了W-APEH结构和原理的可行性。钝的身体内刚性翅膀的比例较高,增加了飞驰的敏感性。较大的迎风角会延缓W-APEH舞动的发生,缩短耦合振动的时间,降低输出电压。在柔性翼厚度保持在0.3毫米以下的情况下,厚度的增加会导致驰骋时间延长,随后会出现涡激振动。具体来说,起始风速仅为3.5 m/s,工作风速范围为5~21 m/s,结构尺寸合适。此外,W-APEH 在 250 kΩ 的最佳负载电阻下提供 3.78 mW 的最大输出功率。
更新日期:2024-09-07
中文翻译:
利用刚柔复合钝体的风适应压电能量采集器的设计和表征
针对当前能量采集器中舞动过程中振幅失控和涡激振动过程中有效带宽窄所带来的挑战,提出了一种利用刚柔复合钝体(W-APEH)的新型风适应压电能量采集器。刚柔复合钝体提高了环境适应性和发电能力。刚柔复合钝体由Y形向R形转变过程中,振动模式由驰动振动转变为耦合振动,再转变为涡激振动。通过一系列的仿真和实验,证明了W-APEH结构和原理的可行性。钝的身体内刚性翅膀的比例较高,增加了飞驰的敏感性。较大的迎风角会延缓W-APEH舞动的发生,缩短耦合振动的时间,降低输出电压。在柔性翼厚度保持在0.3毫米以下的情况下,厚度的增加会导致驰骋时间延长,随后会出现涡激振动。具体来说,起始风速仅为3.5 m/s,工作风速范围为5~21 m/s,结构尺寸合适。此外,W-APEH 在 250 kΩ 的最佳负载电阻下提供 3.78 mW 的最大输出功率。