当前位置:
X-MOL 学术
›
J. Alloys Compd.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Synergistic optimization of barium titanate-based ferroelectrics for enhanced energy storage performance
Journal of Alloys and Compounds ( IF 5.8 ) Pub Date : 2024-09-05 , DOI: 10.1016/j.jallcom.2024.176372 Yunyao Huang , Yule Yang , Leiyang Zhang , Vladimir Laletin , Vladimir Shur , Ruiyi Jing , Li Jin
Journal of Alloys and Compounds ( IF 5.8 ) Pub Date : 2024-09-05 , DOI: 10.1016/j.jallcom.2024.176372 Yunyao Huang , Yule Yang , Leiyang Zhang , Vladimir Laletin , Vladimir Shur , Ruiyi Jing , Li Jin
Barium titanate (BT) ferroelectric materials have garnered significant interest in pulse dielectric capacitor devices due to their remarkable chemical stability and exceptional electrical performance. However, their inferior energy-storage performance (ESP), characterized by inadequate breakdown strength and high energy storage loss, has hindered their further advancement in applications. To address this challenge, we adopt a synergistic optimization strategy combining composition design with chemical substitution and microstructure engineering through the viscous polymer process (VPP) to develop an eco-friendly system, denoted as (1–x )[0.65BaTiO3 -0.35(Sr0.7 Bi0.2 )TiO3 ]-x Bi(Mg2/3 Nb1/3 )O3 (abbreviated as BS-x BMN). This deliberate modification enhances polarization by leveraging the hybridization of the 6 s orbitals of Bi3+ ions with the 2p orbitals of O2− ions. By adjusting the BMN content to regulate relaxor ferroelectric characteristics and field-induced polarization, we promote the formation of polar nanoregions and microstructural heterogeneity, ultimately enhancing ESP and improving the thermal stability of the materials. In the BS-0.05BMN ceramics fabricated by the VPP, we simultaneously achieve a large recoverable ES density of 5.29 J/cm3 and a prime energy storage efficiency of 95.3% under the E -field of 520 kV/cm, along with reliable temperature applicability within 30−150 °C. These results highlight the potential of BT-based materials for energy storage and provide guidance for future research endeavors.
中文翻译:
钛酸钡基铁电体的协同优化以增强储能性能
钛酸钡(BT)铁电材料因其卓越的化学稳定性和卓越的电气性能而在脉冲介电电容器器件中引起了极大的兴趣。然而,它们的储能性能(ESP)较差,表现为击穿强度不足和储能损耗较高,阻碍了其应用的进一步发展。为了应对这一挑战,我们采用了通过粘性聚合物工艺(VPP)将成分设计与化学替代和微结构工程相结合的协同优化策略,开发了一种环保系统,表示为(1–x)[0.65BaTiO3-0.35(Sr0) .7Bi0.2)TiO3]-xBi(Mg2/3Nb1/3)O3(缩写为 BS-xBMN)。这种有意的修改通过利用 Bi3+ 离子的 6 s 轨道与 O2− 离子的 2p 轨道的杂化来增强极化。通过调节BMN含量来调节弛豫铁电特性和场致极化,促进极性纳米区域和微观结构异质性的形成,最终增强ESP并提高材料的热稳定性。在VPP制造的BS-0.05BMN陶瓷中,我们同时实现了5.29 J/cm3的大可恢复ES密度和520 kV/cm电场下95.3%的主要储能效率,以及可靠的温度适用性30−150°C 内。这些结果凸显了基于BT的材料在储能方面的潜力,并为未来的研究工作提供了指导。
更新日期:2024-09-05
中文翻译:
钛酸钡基铁电体的协同优化以增强储能性能
钛酸钡(BT)铁电材料因其卓越的化学稳定性和卓越的电气性能而在脉冲介电电容器器件中引起了极大的兴趣。然而,它们的储能性能(ESP)较差,表现为击穿强度不足和储能损耗较高,阻碍了其应用的进一步发展。为了应对这一挑战,我们采用了通过粘性聚合物工艺(VPP)将成分设计与化学替代和微结构工程相结合的协同优化策略,开发了一种环保系统,表示为(1–x)[0.65BaTiO3-0.35(Sr0) .7Bi0.2)TiO3]-xBi(Mg2/3Nb1/3)O3(缩写为 BS-xBMN)。这种有意的修改通过利用 Bi3+ 离子的 6 s 轨道与 O2− 离子的 2p 轨道的杂化来增强极化。通过调节BMN含量来调节弛豫铁电特性和场致极化,促进极性纳米区域和微观结构异质性的形成,最终增强ESP并提高材料的热稳定性。在VPP制造的BS-0.05BMN陶瓷中,我们同时实现了5.29 J/cm3的大可恢复ES密度和520 kV/cm电场下95.3%的主要储能效率,以及可靠的温度适用性30−150°C 内。这些结果凸显了基于BT的材料在储能方面的潜力,并为未来的研究工作提供了指导。