当前位置:
X-MOL 学术
›
Chem. Eng. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Experimental evaluation of novel gas liquid contactor packing based on triply periodic minimal surfaces (TPMS)
Chemical Engineering Science ( IF 4.1 ) Pub Date : 2024-09-03 , DOI: 10.1016/j.ces.2024.120690 Gregory Homem Alves César Ribeiro , David Rouzineau , Michel Meyer
Chemical Engineering Science ( IF 4.1 ) Pub Date : 2024-09-03 , DOI: 10.1016/j.ces.2024.120690 Gregory Homem Alves César Ribeiro , David Rouzineau , Michel Meyer
Additive manufacturing has widened the possibilities of design for gas–liquid packing geometries in recent years, allowing for new unexplored shapes. A novel design approach based on triply periodic minimal surfaces (TPMS1 1 Triply periodic minimal surfaces. ), an interesting class of smoothened curved surfaces, led to the conception of new periodic structures with complex geometrical features. The present study aims to assess the applicability of these new TPMS-based geometries as packing for gas–liquid contactors and the effect of their topology on performance. Liquid holdup, pressure drop, flooding and mass transfer efficiency were evaluated for three TPMS-based prototypes, with distinct characteristic dimensions. A new experimental setup was developed for the estimation of liquid holdup based on the measure of the liquid weight during operation by a set of load cells. Results show good repeatability and precision, allowing to distinguish liquid holdup between the prototypes for various gas and liquid flow rates. Two of the studied prototypes presented higher holdup than the 5 ppi ceramic foam and the 15 mm Raschig rings for lower liquid rates. Prototypes also showed good results for pressure drop, with flooding reached at gas load factors above 3 Pa 0.5 . In terms of mass transfer efficiency, HETP results for the new prototypes remained between 0.35 m and 0.45 m , comparable to Mellapak 250Y.
中文翻译:
基于三周期性最小表面 (TPMS) 的新型气液接触器填料的实验评价
近年来,增材制造拓宽了气液堆积几何设计的可能性,允许开发新的未开发形状。一种基于三重周期最小表面 (TPMS11Triply periodic minimal surfaces.) 的新设计方法,一类有趣的平滑曲面,导致了具有复杂几何特征的新周期性结构的概念。本研究旨在评估这些基于 TPMS 的新型几何形状作为气液接触器填料的适用性以及其拓扑结构对性能的影响。对三个基于 TPMS 的原型进行了保液、压降、溢流和传质效率的评估,这些原型具有不同的特征尺寸。开发了一种新的实验装置,用于根据一组称重传感器在运行过程中的液体重量测量来估计液体滞留量。结果显示良好的可重复性和精度,可以区分不同气体和液体流速下原型之间的液体滞留。在较低的液体速率下,两个研究的原型表现出比 5 ppi 陶瓷泡沫和 15 mm Raschig 环更高的保持力。原型还显示出良好的压降结果,在气体负荷系数高于 3Pa0.5 时达到溢流。在传质效率方面,新原型的 HETP 结果保持在 0.35m 和 0.45m 之间,与 Mellapak 250Y 相当。
更新日期:2024-09-03
中文翻译:
基于三周期性最小表面 (TPMS) 的新型气液接触器填料的实验评价
近年来,增材制造拓宽了气液堆积几何设计的可能性,允许开发新的未开发形状。一种基于三重周期最小表面 (TPMS11Triply periodic minimal surfaces.) 的新设计方法,一类有趣的平滑曲面,导致了具有复杂几何特征的新周期性结构的概念。本研究旨在评估这些基于 TPMS 的新型几何形状作为气液接触器填料的适用性以及其拓扑结构对性能的影响。对三个基于 TPMS 的原型进行了保液、压降、溢流和传质效率的评估,这些原型具有不同的特征尺寸。开发了一种新的实验装置,用于根据一组称重传感器在运行过程中的液体重量测量来估计液体滞留量。结果显示良好的可重复性和精度,可以区分不同气体和液体流速下原型之间的液体滞留。在较低的液体速率下,两个研究的原型表现出比 5 ppi 陶瓷泡沫和 15 mm Raschig 环更高的保持力。原型还显示出良好的压降结果,在气体负荷系数高于 3Pa0.5 时达到溢流。在传质效率方面,新原型的 HETP 结果保持在 0.35m 和 0.45m 之间,与 Mellapak 250Y 相当。