当前位置:
X-MOL 学术
›
Process Saf. Environ. Prot.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Performance and biotoxicity of electro-Fenton treatment of bisphenol A: Evaluation of copper recovered from microbial fuel cell cathodes for subsequent catalytic applications
Process Safety and Environmental Protection ( IF 6.9 ) Pub Date : 2024-09-03 , DOI: 10.1016/j.psep.2024.09.004 Chi-Wen Lin , Guan-Yi Chen , Shu-Hui Liu , Wei Tong Chen , Shih-Hsien Chang , Chih-Yu Ma
Process Safety and Environmental Protection ( IF 6.9 ) Pub Date : 2024-09-03 , DOI: 10.1016/j.psep.2024.09.004 Chi-Wen Lin , Guan-Yi Chen , Shu-Hui Liu , Wei Tong Chen , Shih-Hsien Chang , Chih-Yu Ma
A three-tank microbial fuel cell (MFC) is successfully constructed to achieve electromigration and is used in the electro-Fenton process to treat bisphenol A (BPA). The MFC system exhibits excellent mobility and efficiently aggregates Cu+ to the cathode. Under optimal operating conditions, the MFC achieves a maximum power density of 31.4 mW/m2 , which is a 3.4-fold increase over that at 0.5 kΩ. Increasing the external resistance increased the MFC power output (ca 1.5 times) and copper ion migration (ca 4.6 times) while reducing the internal resistance of the system (ca 25.3 %). Surface analysis of the cathode carbon cloth shows a 5.5-fold increase in copper content at 1 kΩ over that at 0.5 kΩ. This also increases the oxygen reduction reaction rate, thereby increasing the H2 O2 yield by 1.5 times. The recovered copper cathode at 1 kΩ exhibits the best catalytic degradation of BPA, removing 99.7 % of BPA in 180 min, increasing 1.4 and 1.8 times that obtained at 1.5 and 0.5 kΩ, respectively. The optimal operating conditions significantly increased the abundance of electrochemically active bacteria (Azospirillaceae ) (3.2 %−41.7 %), indicating that the optimized MFC is favorable for the rapid acclimatization of electrochemically active bacteria.
中文翻译:
双酚 A 的电芬顿处理的性能和生物毒性:从微生物燃料电池阴极回收的铜用于后续催化应用的评价
成功构建了三槽微生物燃料电池 (MFC) 以实现电迁移,并用于电芬顿工艺以处理双酚 A (BPA)。MFC 系统表现出优异的迁移率,并有效地将 Cu+ 聚集到阴极。在最佳工作条件下,MFC 的最大功率密度为 31.4 mW/m2,比 0.5 kΩ 时高出 3.4 倍。增加外部电阻增加了 MFC 功率输出(约 1.5 倍)和铜离子迁移(约 4.6 倍),同时降低了系统的内阻(约 25.3%)。阴极碳布的表面分析表明,1 kΩ 时的铜含量比 0.5 kΩ 时的铜含量增加了 5.5 倍。这也提高了氧还原反应速率,从而使 H2O2 产率提高 1.5 倍。回收的 1 kΩ 阴极铜对 BPA 的催化降解效果最好,在 180 分钟内去除了 99.7% 的 BPA,分别是 1.5 和 0.5 kΩ 时获得的 1.4 倍和 1.8 倍。最佳操作条件显著提高了电化学活性细菌 (Azospirillaceae) 的丰度 (3.2 %−41.7 %),表明优化的 MFC 有利于电化学活性细菌的快速适应。
更新日期:2024-09-03
中文翻译:
双酚 A 的电芬顿处理的性能和生物毒性:从微生物燃料电池阴极回收的铜用于后续催化应用的评价
成功构建了三槽微生物燃料电池 (MFC) 以实现电迁移,并用于电芬顿工艺以处理双酚 A (BPA)。MFC 系统表现出优异的迁移率,并有效地将 Cu+ 聚集到阴极。在最佳工作条件下,MFC 的最大功率密度为 31.4 mW/m2,比 0.5 kΩ 时高出 3.4 倍。增加外部电阻增加了 MFC 功率输出(约 1.5 倍)和铜离子迁移(约 4.6 倍),同时降低了系统的内阻(约 25.3%)。阴极碳布的表面分析表明,1 kΩ 时的铜含量比 0.5 kΩ 时的铜含量增加了 5.5 倍。这也提高了氧还原反应速率,从而使 H2O2 产率提高 1.5 倍。回收的 1 kΩ 阴极铜对 BPA 的催化降解效果最好,在 180 分钟内去除了 99.7% 的 BPA,分别是 1.5 和 0.5 kΩ 时获得的 1.4 倍和 1.8 倍。最佳操作条件显著提高了电化学活性细菌 (Azospirillaceae) 的丰度 (3.2 %−41.7 %),表明优化的 MFC 有利于电化学活性细菌的快速适应。