当前位置:
X-MOL 学术
›
Process Saf. Environ. Prot.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Optimization of cleaning process in semiconductor gas delivery system by computational fluid dynamics simulation
Process Safety and Environmental Protection ( IF 6.9 ) Pub Date : 2024-08-26 , DOI: 10.1016/j.psep.2024.08.081 Ireh Seo , Rakyoung Jeon , Tae-ung Yoon , Chang-Ha Lee
Process Safety and Environmental Protection ( IF 6.9 ) Pub Date : 2024-08-26 , DOI: 10.1016/j.psep.2024.08.081 Ireh Seo , Rakyoung Jeon , Tae-ung Yoon , Chang-Ha Lee
Purging specialty gas delivery systems in semiconductor industries are essential for ensuring worker safety and complying with stringent environmental regulations. The cleaning process impacts production costs due to the required resources and time. This study introduced and evaluated various purging methods, combining vacuum, vacuum with purge, pressurization, and pressure-gradient purge steps. Considering the density and viscosity of various specialty gases used in semiconductor manufacturing, such as gaseous NH3 , HCl, WF6 , and SiCl4 , were selected as the representative specialty gases for the system. Considering the utilization of the semiconductor industries, ultra-high purity nitrogen was selected to clean all components of the gas delivery system, including gas channels, filters, pressure regulator and diaphragm valves. Efficiency was measured by monitoring residual gas concentration changes during different purge-step configurations, the number of purge configuration, and step durations. The dynamic behavior of specialty gases was analyzed based on geometric factors and chemical properties. Findings indicated that cleaning dead-end zones was particularly challenging and impacting overall system efficiency. Frequent purge with a short step time proved more effective in removing residual chemicals than the present conventional vacuum purge process with a continuous N2 supply. Employing a pressure gradient between the inlet and outlet enhanced cleaning efficiency. These insights provide valuable guidelines for optimizing purging processes to reduce cleaning time and resource consumption in semiconductor manufacturing.
中文翻译:
基于计算流体动力学仿真的半导体气体输送系统清洗过程优化
半导体行业中的吹扫特种气体输送系统对于确保工人安全和遵守严格的环境法规至关重要。由于所需的资源和时间,清洁过程会影响生产成本。本研究介绍并评估了各种吹扫方法,包括真空、真空吹扫、加压和压力梯度吹扫步骤。考虑到半导体制造中使用的各种特种气体(如气态 NH3)的密度和粘度,HCl、WF6 和 SiCl4 被选为该系统的代表性特种气体。考虑到半导体工业的利用,选择超高纯度氮气来清洁气体输送系统的所有组件,包括气体通道、过滤器、压力调节器和隔膜阀。通过监测不同吹扫步骤配置期间的残余气体浓度变化、吹扫配置的数量和步骤持续时间来测量效率。根据几何因素和化学性质分析特种气体的动态行为。结果表明,清洁死胡同区域特别具有挑战性,并且会影响整体系统效率。事实证明,与目前使用连续 N2 供应的传统真空吹扫工艺相比,短步骤的频繁吹扫在去除残留化学品方面更有效。在入口和出口之间采用压力梯度,提高了清洁效率。这些见解为优化清洗工艺以减少半导体制造中的清洁时间和资源消耗提供了有价值的指导。
更新日期:2024-08-26
中文翻译:
基于计算流体动力学仿真的半导体气体输送系统清洗过程优化
半导体行业中的吹扫特种气体输送系统对于确保工人安全和遵守严格的环境法规至关重要。由于所需的资源和时间,清洁过程会影响生产成本。本研究介绍并评估了各种吹扫方法,包括真空、真空吹扫、加压和压力梯度吹扫步骤。考虑到半导体制造中使用的各种特种气体(如气态 NH3)的密度和粘度,HCl、WF6 和 SiCl4 被选为该系统的代表性特种气体。考虑到半导体工业的利用,选择超高纯度氮气来清洁气体输送系统的所有组件,包括气体通道、过滤器、压力调节器和隔膜阀。通过监测不同吹扫步骤配置期间的残余气体浓度变化、吹扫配置的数量和步骤持续时间来测量效率。根据几何因素和化学性质分析特种气体的动态行为。结果表明,清洁死胡同区域特别具有挑战性,并且会影响整体系统效率。事实证明,与目前使用连续 N2 供应的传统真空吹扫工艺相比,短步骤的频繁吹扫在去除残留化学品方面更有效。在入口和出口之间采用压力梯度,提高了清洁效率。这些见解为优化清洗工艺以减少半导体制造中的清洁时间和资源消耗提供了有价值的指导。