当前位置:
X-MOL 学术
›
Process Saf. Environ. Prot.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Urban air quality index forecasting using multivariate convolutional neural network based customized stacked long short-term memory model
Process Safety and Environmental Protection ( IF 6.9 ) Pub Date : 2024-08-23 , DOI: 10.1016/j.psep.2024.08.076 Sweta Dey
Process Safety and Environmental Protection ( IF 6.9 ) Pub Date : 2024-08-23 , DOI: 10.1016/j.psep.2024.08.076 Sweta Dey
In the context of increasing urban pollution and its adverse health effects, this study focuses on enhancing the air quality prediction model by forecasting future concentrations of various Air Quality Index (AQI) levels to support the development of green smart cities . The primary objective of this study is to develop a robust multivariate time series forecasting model using a combination of Convolutional Neural Networks (CNN) and Customized Stacked-based Long Short-Term Memory (CSLSTM) networks, namely C2 SLSTM. The proposed methodology involved preprocessing AQI and meteorological data, scaling the features, and employing a hybrid CNN-LSTM architecture to capture spatial and temporal dependencies in the data. Dynamic AQI pattern changes are computed using online learning . The proposed model was trained on a big dataset containing AQIs such as particulate matter (PM2.5 ), carbon monoxide (CO), and nitrogen dioxide (NO2 ), along with meteorological factors like weather count, temperature, wind, humidity, and pressure. Experimental results demonstrate that the model achieved a mean absolute error (MAE) of 0.25, mean square error (MSE) of 0.083, root mean square error (RMSE) of 0.289 and a R2 -Score of 0.84 on the test set. Also, compared to Long Short-Term Memory (LSTM), Convolutional Neural Network (CNN), Stacked Long Short-Term Memory (SLSTM), and Multilayer Perceptron (MLP) models, the C2 SLSTM model showcases a performance enhancement of 35 %, 50 %, 30 %, and 32 %. Notably, the CNN component effectively extracted spatial features, while the LSTM layers captured temporal patterns, leading to precise predictions. These results indicate that the proposed approach effectively captures temporal dependencies and improves forecasting performance, with R2 -Score values tending towards 1 for 12-hour prediction intervals. This research demonstrates the potential of advanced SLSTM architectures in accurately predicting AQI metrics, which can aid in better environmental monitoring and management. Also, the spatiotemporal correlation analysis is done through the designed i r metric.
中文翻译:
基于多元卷积神经网络的定制堆叠长短期记忆模型城市空气质量指数预测
在城市污染日益严重及其对健康的不利影响的背景下,本研究的重点是通过预测各种空气质量指数 (AQI) 水平的未来浓度来增强空气质量预测模型,以支持绿色智慧城市的发展。本研究的主要目标是使用卷积神经网络 (CNN) 和定制的基于堆叠的长短期记忆 (CSLSTM) 网络(即 C2SLSTM)的组合开发一个稳健的多元时间序列预测模型。所提出的方法包括预处理 AQI 和气象数据,缩放特征,并采用混合 CNN-LSTM 架构来捕获数据中的空间和时间依赖关系。动态 AQI 模式变化是使用在线学习计算的。所提出的模型在一个大型数据集上进行了训练,该数据集包含颗粒物 (PM2.5)、一氧化碳 (CO) 和二氧化氮 (NO2) 等 AQI,以及天气计数、温度、风、湿度和压力等气象因素。实验结果表明,该模型在测试集上实现了 0.25 的平均绝对误差 (MAE) 、0.083 的均方误差 (MSE) 、0.289 的均方根误差 (RMSE) 和 0.84 的 R2 分数。此外,与长短期记忆 (LSTM)、卷积神经网络 (CNN)、堆叠长短期记忆 (SLSTM) 和多层感知器 (MLP) 模型相比,C2SLSTM模型的性能提高了 35 %、50 %、30 % 和 32 %。值得注意的是,CNN 组件有效地提取了空间特征,而 LSTM 层捕获了时间模式,从而实现了精确的预测。 这些结果表明,所提出的方法有效地捕获了时间依赖性并提高了预测性能,在 12 小时的预测区间内,R2-Score 值趋向于 1。这项研究证明了先进的 SLSTM 架构在准确预测 AQI 指标方面的潜力,这有助于更好地进行环境监测和管理。此外,时空相关性分析是通过设计的 ir 指标完成的。
更新日期:2024-08-23
中文翻译:
基于多元卷积神经网络的定制堆叠长短期记忆模型城市空气质量指数预测
在城市污染日益严重及其对健康的不利影响的背景下,本研究的重点是通过预测各种空气质量指数 (AQI) 水平的未来浓度来增强空气质量预测模型,以支持绿色智慧城市的发展。本研究的主要目标是使用卷积神经网络 (CNN) 和定制的基于堆叠的长短期记忆 (CSLSTM) 网络(即 C2SLSTM)的组合开发一个稳健的多元时间序列预测模型。所提出的方法包括预处理 AQI 和气象数据,缩放特征,并采用混合 CNN-LSTM 架构来捕获数据中的空间和时间依赖关系。动态 AQI 模式变化是使用在线学习计算的。所提出的模型在一个大型数据集上进行了训练,该数据集包含颗粒物 (PM2.5)、一氧化碳 (CO) 和二氧化氮 (NO2) 等 AQI,以及天气计数、温度、风、湿度和压力等气象因素。实验结果表明,该模型在测试集上实现了 0.25 的平均绝对误差 (MAE) 、0.083 的均方误差 (MSE) 、0.289 的均方根误差 (RMSE) 和 0.84 的 R2 分数。此外,与长短期记忆 (LSTM)、卷积神经网络 (CNN)、堆叠长短期记忆 (SLSTM) 和多层感知器 (MLP) 模型相比,C2SLSTM模型的性能提高了 35 %、50 %、30 % 和 32 %。值得注意的是,CNN 组件有效地提取了空间特征,而 LSTM 层捕获了时间模式,从而实现了精确的预测。 这些结果表明,所提出的方法有效地捕获了时间依赖性并提高了预测性能,在 12 小时的预测区间内,R2-Score 值趋向于 1。这项研究证明了先进的 SLSTM 架构在准确预测 AQI 指标方面的潜力,这有助于更好地进行环境监测和管理。此外,时空相关性分析是通过设计的 ir 指标完成的。