当前位置:
X-MOL 学术
›
Prog. Mater. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Multi-scale computational study of high-temperature corrosion and the design of corrosion-resistant alloys
Progress in Materials Science ( IF 33.6 ) Pub Date : 2024-08-30 , DOI: 10.1016/j.pmatsci.2024.101359 Terrence Wenga , Digby D. Macdonald , Wenchao Ma
Progress in Materials Science ( IF 33.6 ) Pub Date : 2024-08-30 , DOI: 10.1016/j.pmatsci.2024.101359 Terrence Wenga , Digby D. Macdonald , Wenchao Ma
Corrosion is a serious problem, which reduces the efficiency and lifespan of various technologies, such as thermal power plants, aviation, nuclear reactors, etc. It starts from the interactions of corrosive species with alloys to various subsequent processes, such as oxide-formation, growth, and delamination, void and crevices-formation, etc., which all have different lengths and time-spans. Resolving such a problem requires a complete understanding of these processes, necessitating multi-scale computational modeling (MSCM). Available literature focuses mainly on single aspects of corrosion, such as the adsorption of corrosive agents on alloy or cracking, which requires the application of single computational modeling (SCM). Applying SCM is inadequate for addressing and describing some essential corrosion processes as spatial and temporal scales increase, as well as designing corrosion-resistant alloys, which also requires MSCM to couple various properties along their hierarchical structures. Thus, this paper critically and comprehensively reviews the MSCM of high-temperature corrosion and its control. The structure–property relationships during alloy design were discussed. Also, challenges and hot spots for further research directions were identified. We foresee that, in the future, there will be wide applications of MSCM to uncover the hitherto unknown corrosion processes, and alloys will be designed from atomic/molecular structures. Hence, this review paper will provide several computational options for corrosion investigation and connecting alloy structures to properties during alloy designing.
中文翻译:
高温腐蚀的多尺度计算研究和耐腐蚀合金的设计
腐蚀是一个严重的问题,它会降低各种技术的效率和寿命,例如火力发电厂、航空、核反应堆等。它从腐蚀性物质与合金的相互作用开始,到各种后续过程,如氧化物形成、生长和分层、空隙和裂缝形成等,这些过程都有不同的长度和时间跨度。解决此类问题需要对这些过程有全面的了解,因此需要多尺度计算建模 (MSCM)。现有文献主要关注腐蚀的单个方面,例如腐蚀剂对合金的吸附或开裂,这需要应用单一计算建模 (SCM)。随着空间和时间尺度的增加,应用 SCM 不足以解决和描述一些基本的腐蚀过程,也不足以设计耐腐蚀合金,这也要求 MSCM 沿其层次结构耦合各种属性。因此,本文对高温腐蚀的 MSCM 及其控制进行了批判性而全面的综述。讨论了合金设计过程中的结构-性能关系。此外,还确定了进一步研究方向的挑战和热点。我们预计,在未来,MSCM 将有广泛的应用来揭示迄今为止未知的腐蚀过程,并且合金将从原子/分子结构中设计出来。因此,本综述论文将为腐蚀研究和在合金设计过程中将合金结构与属性联系起来提供多种计算选项。
更新日期:2024-08-30
中文翻译:
高温腐蚀的多尺度计算研究和耐腐蚀合金的设计
腐蚀是一个严重的问题,它会降低各种技术的效率和寿命,例如火力发电厂、航空、核反应堆等。它从腐蚀性物质与合金的相互作用开始,到各种后续过程,如氧化物形成、生长和分层、空隙和裂缝形成等,这些过程都有不同的长度和时间跨度。解决此类问题需要对这些过程有全面的了解,因此需要多尺度计算建模 (MSCM)。现有文献主要关注腐蚀的单个方面,例如腐蚀剂对合金的吸附或开裂,这需要应用单一计算建模 (SCM)。随着空间和时间尺度的增加,应用 SCM 不足以解决和描述一些基本的腐蚀过程,也不足以设计耐腐蚀合金,这也要求 MSCM 沿其层次结构耦合各种属性。因此,本文对高温腐蚀的 MSCM 及其控制进行了批判性而全面的综述。讨论了合金设计过程中的结构-性能关系。此外,还确定了进一步研究方向的挑战和热点。我们预计,在未来,MSCM 将有广泛的应用来揭示迄今为止未知的腐蚀过程,并且合金将从原子/分子结构中设计出来。因此,本综述论文将为腐蚀研究和在合金设计过程中将合金结构与属性联系起来提供多种计算选项。