当前位置: X-MOL 学术Anal. Chim. Acta › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mesoporous carbon hollow spheres based sensitive SPME probes for in vivo sampling analysis of selected plant hormones in Chinese aloes
Analytica Chimica Acta ( IF 5.7 ) Pub Date : 2024-09-01 , DOI: 10.1016/j.aca.2024.343191
Yan Liu , Jiajia Han , Guosheng Chen , Siming Huang , Shuyao Huang , Juan Zheng , Jianqiao Xu , Fang Zhu , Gangfeng Ouyang

Phytohormones are a class of endogenous substances that separately or synergistically regulate the growth, development, and differentiation of plants. Accurately and efficiently detecting and monitoring the concentration of plant hormones in living plants is of significant importance. Herein, a novel mesoporous carbon hollow spheres (MCHS)-based in vivo solid phase microextraction (SPME) probe was designed for in vivo sampling of plant hormones. The designed MCHS features the advantages of high surface area, porous shells, and large hollow spaces, facilitating the dynamic adsorption and enrichment of target phytohormone. In addition, a cationic polyelectrolyte, (poly (diallyl dimethyl ammonium chloride) (PDDA), was further modified onto the MCHS to expedite the extraction process by electrostatic interaction. Utilizing the MCHS@PDDA probe in combination with HPLC-MS/MS facilitated the continuous monitoring of three plant hormones (abscisic acid (ABA), indole-3-acetic acid (IAA), and gibberellin (GA3)) in Chinese aloe. The detection limit of this method was 0.016–0.090 μg/L, the linear range was 10–1000 μg/L, and both the RSD of the single probe (n = 6) and probe-to-probe test (n = 6) were less than 7.2 %. This method had excellent accuracy and good reproducibility comparable to the traditional sample pretreatment method. Ultimately, this established in-vivo SPME method was successfully adopted to quantify three selected plant hormones in living Chinese Aloes, providing a new method for the long-term monitoring of endogenous active substances in living system.
更新日期:2024-09-01
down
wechat
bug