当前位置:
X-MOL 学术
›
Anal. Chim. Acta
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Surface enhanced Raman spectroscopy and machine learning for identification of beta-lactam antibiotics resistance gene fragment in bacterial plasmid
Analytica Chimica Acta ( IF 5.7 ) Pub Date : 2024-08-16 , DOI: 10.1016/j.aca.2024.343118 Anastasia Skvortsova , Andrii Trelin , Olga Guselnikova , Alexandra Pershina , Barbora Vokata , Vaclav Svorcik , Oleksiy Lyutakov
Analytica Chimica Acta ( IF 5.7 ) Pub Date : 2024-08-16 , DOI: 10.1016/j.aca.2024.343118 Anastasia Skvortsova , Andrii Trelin , Olga Guselnikova , Alexandra Pershina , Barbora Vokata , Vaclav Svorcik , Oleksiy Lyutakov
Antibiotic resistance stands as a critical medical concern, notably evident in commonly prescribed beta-lactam antibiotics. The imperative need for expeditious and precise early detection methods underscores their role in facilitating timely intervention, curbing the propagation of antibiotic resistance, and enhancing patient outcomes.
中文翻译:
表面增强拉曼光谱和机器学习鉴定细菌质粒中 β-内酰胺类抗生素耐药基因片段
抗生素耐药性是一个关键的医学问题,在常用的 β-内酰胺类抗生素中尤为明显。对快速和精确的早期检测方法的迫切需求强调了它们在促进及时干预、遏制抗生素耐药性传播和提高患者预后方面的作用。
更新日期:2024-08-16
中文翻译:
表面增强拉曼光谱和机器学习鉴定细菌质粒中 β-内酰胺类抗生素耐药基因片段
抗生素耐药性是一个关键的医学问题,在常用的 β-内酰胺类抗生素中尤为明显。对快速和精确的早期检测方法的迫切需求强调了它们在促进及时干预、遏制抗生素耐药性传播和提高患者预后方面的作用。