当前位置:
X-MOL 学术
›
Appl. Surf. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Unlocking the chemistry of graphene: The impact of charge carrier concentration on molecular adsorption on graphene
Applied Surface Science ( IF 6.3 ) Pub Date : 2024-09-06 , DOI: 10.1016/j.apsusc.2024.161175 Maciej J. Szary
Applied Surface Science ( IF 6.3 ) Pub Date : 2024-09-06 , DOI: 10.1016/j.apsusc.2024.161175 Maciej J. Szary
Both intentional and unintentional doping of graphene is a common occurrence, as its carrier concentration can be modulated through various mechanisms. While extensively explored in electronics for achieving desirable conductivity, other aspects of doping remain largely untapped, presenting opportunities for further innovation. This study demonstrates that carrier concentration serves as a powerful and selective tool for modulating the interaction between molecular adsorbates and graphene. The effects are tunable and evident for both n-type and p-type doping, with low-to-medium modulation at doping levels of ± 1012 e /cm2 , and substantial enhancements, with interaction strength increases exceeding 150% and hundreds of meV, at doping levels of ± 1013 e /cm2 . These effects are also molecule-specific, with significant enhancements for species such as water (H2 O), ammonia (NH3 ), and aluminum chloride (AlCl3 ), while having minimal impact on species like hydrogen (H2 ). This finding not only elucidates the fundamental chemical behavior of graphene but also provides a versatile method to tailor its surface chemistry for applications in sensors, catalysis, and electronic devices. The insights from this research pave the way for advanced material design strategies, leveraging the tunable nature of graphene’s properties to optimize its interaction with various molecular species.
中文翻译:
解开石墨烯的化学性质:电荷载流子浓度对石墨烯分子吸附的影响
石墨烯的有意和无意掺杂都很常见,因为其载流子浓度可以通过各种机制进行调节。虽然在电子学中广泛探索了实现理想导电性的方法,但掺杂的其他方面在很大程度上仍未得到开发,这为进一步创新提供了机会。这项研究表明,载流子浓度是调节分子吸附物和石墨烯之间相互作用的强大且选择性的工具。对于 n 型和 p 型掺杂,其效果是可调和明显的,在 ±1012e/cm2 的掺杂水平下具有低到中等调制,并且在 ±1013e/cm2 的掺杂水平下,相互作用强度增加超过 150% 和数百 meV。这些效应也是分子特异性的,对水 (H2O)、氨 (NH3) 和氯化铝 (AlCl3) 等物质有显著增强,而对氢 (H2) 等物质的影响最小。这一发现不仅阐明了石墨烯的基本化学行为,而且还提供了一种通用的方法来定制其表面化学,以适应传感器、催化和电子设备中的应用。这项研究的见解为先进的材料设计策略铺平了道路,利用石墨烯特性的可调特性来优化其与各种分子种类的相互作用。
更新日期:2024-09-06
中文翻译:
解开石墨烯的化学性质:电荷载流子浓度对石墨烯分子吸附的影响
石墨烯的有意和无意掺杂都很常见,因为其载流子浓度可以通过各种机制进行调节。虽然在电子学中广泛探索了实现理想导电性的方法,但掺杂的其他方面在很大程度上仍未得到开发,这为进一步创新提供了机会。这项研究表明,载流子浓度是调节分子吸附物和石墨烯之间相互作用的强大且选择性的工具。对于 n 型和 p 型掺杂,其效果是可调和明显的,在 ±1012e/cm2 的掺杂水平下具有低到中等调制,并且在 ±1013e/cm2 的掺杂水平下,相互作用强度增加超过 150% 和数百 meV。这些效应也是分子特异性的,对水 (H2O)、氨 (NH3) 和氯化铝 (AlCl3) 等物质有显著增强,而对氢 (H2) 等物质的影响最小。这一发现不仅阐明了石墨烯的基本化学行为,而且还提供了一种通用的方法来定制其表面化学,以适应传感器、催化和电子设备中的应用。这项研究的见解为先进的材料设计策略铺平了道路,利用石墨烯特性的可调特性来优化其与各种分子种类的相互作用。