当前位置: X-MOL 学术Appl. Surf. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Bi-piezoelectric and plasmonic enhanced photocatalysis using Au/Bi2WO6/PVDF flexible films for efficient dye wastewater treatment: Heterogeneous interfacial engineering, degradation pathways and mechanism insight
Applied Surface Science ( IF 6.3 ) Pub Date : 2024-09-04 , DOI: 10.1016/j.apsusc.2024.161163
Tiehong Song , Guanqiao Li , Xiaodan Yu , Jianxin Xia , Qiyuan Deng , Xiaojuan Liu , Yanjiao Gao

Photocatalytic oxidation technology has great potential in solving energy and environmental challenges. Here, an innovative theoretical framework based on Au/Bi2WO6/PVDF ternary composite films that integrates piezoelectric polarization with localized surface plasmon resonance (LSPR) was proposed, aiming to effectively break through these technical bottlenecks. Photoluminescence (PL) spectra, photocurrent density-time curves, and UV–vis diffuse reflectance spectra (UV–vis DRS) unequivocally visualize the substantial enhancement imparted by Au NPs. Under the co-excitation of illumination and ultrasonic treatment, the Au/BWO/PVDF ternary heterostructure demonstrated an impressive 98.1 % degradation rate of Rhodamine B (RhB) within 60 min and a high pseudo-first-order kinetic constant (k) of 0.0644 min−1. The superior piezo-photocatalytic degradation activity was primarily attributed to the built-in bi-piezoelectric field of BWO and PVDF as well as the LSPR effect of Au NPs. Based on liquid chromatography-mass spectrometry (LC-MS) techniques, condensed Fukui function, and frontier molecular orbital theory, we comprehensively summarized the potential degradation pathways of RhB. On this basis, the toxicological assessment results confirmed that the piezo-photocatalytic system can effectively reduce the ecological toxicity of RhB. In addition, density functional theory (DFT) calculations elucidated the charge transfer pathway at the Au/BWO contact interface, revealing the transfer of free electrons from Au to BWO.

中文翻译:


使用 Au/Bi2WO6/PVDF 柔性薄膜进行双压电和等离子体增强光催化处理染料废水:异质界面工程、降解途径和机理见解



光催化氧化技术在解决能源和环境挑战方面具有巨大潜力。在此,提出了一种基于 Au/Bi2WO6/PVDF 三元复合薄膜的创新理论框架,该框架将压电极化与局域表面等离子体共振 (LSPR) 相结合,旨在有效突破这些技术瓶颈。光致发光 (PL) 光谱、光电流密度-时间曲线和 UV-vis 漫反射光谱 (UV-vis DRS) 明确地可视化了 Au NP 赋予的实质性增强。在照明和超声处理的共激发下,Au/BWO/PVDF 三元异质结构在 60 分钟内表现出令人印象深刻的 98.1% 的罗丹明 B (RhB) 降解率和 0.0644 min-1 的高准一阶动力学常数 (k)。优异的压电光催化降解活性主要归因于 BWO 和 PVDF 的内置双压电场以及 Au NPs 的 LSPR 效应。基于液相色谱-质谱 (LC-MS) 技术、浓缩福井函数和前沿分子轨道理论,我们全面总结了 RhB 的潜在降解途径。在此基础上,毒理学评价结果证实,压电光催化体系可有效降低 RhB 的生态毒性。此外,密度泛函理论 (DFT) 计算阐明了 Au/BWO 接触界面处的电荷转移途径,揭示了自由电子从 Au 到 BWO 的转移。
更新日期:2024-09-04
down
wechat
bug