当前位置:
X-MOL 学术
›
Eng. Anal. Bound. Elem.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Analysis of acoustic radiation problems involving arbitrary immersed media interfaces by the extended finite element method with Dirichlet to Neumann boundary condition
Engineering Analysis With Boundary Elements ( IF 4.2 ) Pub Date : 2024-09-02 , DOI: 10.1016/j.enganabound.2024.105936
Houbiao Ma , Ali Tian , Guohao Sui , Qiaozhong Li , Yahui Zhang
Engineering Analysis With Boundary Elements ( IF 4.2 ) Pub Date : 2024-09-02 , DOI: 10.1016/j.enganabound.2024.105936
Houbiao Ma , Ali Tian , Guohao Sui , Qiaozhong Li , Yahui Zhang
To quantify the influence of moving immersed media on acoustic radiation, this study develops an efficient method for acoustic radiation with arbitrary immersed media interfaces based on the extended finite element method (XFEM) and the Dirichlet-to-Neumann (DtN) boundary condition. The XFEM is employed for efficient and accurate modeling of the acoustic field with boundary shape variations. It requires no modification of the computational mesh and accurately captures non-smooth solutions on the interface by constructing enrichment functions. Additionally, the DtN boundary condition simulates the far-field radiation condition by establishing the relationship between the acoustic pressure and its derivatives. Numerical examples show that the proposed method efficiently characterizes changes in the position of immersed media interfaces without re-meshing the mesh. Variations in the thickness of porous material domains alter the acoustic radiation characteristics, with thicker porous material domains resulting in more pronounced noise reduction effects. Compared to changes in the thickness of porous material domains, changes in their position significantly alter the distribution of radiation pressure, indicating that ideal noise reduction effects can be achieved by strategically placing porous materials in specific locations in practical engineering applications.
中文翻译:
采用狄利克雷到诺依曼边界条件的扩展有限元法分析涉及任意浸没介质界面的声辐射问题
为了量化移动浸没介质对声辐射的影响,本研究基于扩展有限元法 (XFEM) 和狄利克雷到诺依曼 (DtN) 边界条件,开发了一种有效的任意浸没介质界面声辐射方法。 XFEM 用于对具有边界形状变化的声场进行高效、准确的建模。它不需要修改计算网格,并通过构造富集函数来准确捕获界面上的非光滑解。此外,DtN边界条件通过建立声压及其导数之间的关系来模拟远场辐射条件。数值例子表明,所提出的方法有效地表征了浸入介质界面位置的变化,而无需重新划分网格。多孔材料域厚度的变化改变了声辐射特性,较厚的多孔材料域导致更明显的降噪效果。与多孔材料域厚度的变化相比,其位置的变化显着改变了辐射压力的分布,这表明在实际工程应用中通过策略性地将多孔材料放置在特定位置可以实现理想的降噪效果。
更新日期:2024-09-02
中文翻译:
采用狄利克雷到诺依曼边界条件的扩展有限元法分析涉及任意浸没介质界面的声辐射问题
为了量化移动浸没介质对声辐射的影响,本研究基于扩展有限元法 (XFEM) 和狄利克雷到诺依曼 (DtN) 边界条件,开发了一种有效的任意浸没介质界面声辐射方法。 XFEM 用于对具有边界形状变化的声场进行高效、准确的建模。它不需要修改计算网格,并通过构造富集函数来准确捕获界面上的非光滑解。此外,DtN边界条件通过建立声压及其导数之间的关系来模拟远场辐射条件。数值例子表明,所提出的方法有效地表征了浸入介质界面位置的变化,而无需重新划分网格。多孔材料域厚度的变化改变了声辐射特性,较厚的多孔材料域导致更明显的降噪效果。与多孔材料域厚度的变化相比,其位置的变化显着改变了辐射压力的分布,这表明在实际工程应用中通过策略性地将多孔材料放置在特定位置可以实现理想的降噪效果。