当前位置:
X-MOL 学术
›
Appl. Math. Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
[formula omitted]-dressing approach and [formula omitted]-soliton solutions of the general reverse-space nonlocal nonlinear Schrödinger equation
Applied Mathematics Letters ( IF 2.9 ) Pub Date : 2024-09-03 , DOI: 10.1016/j.aml.2024.109293 Feng Zhang , Xiangpeng Xin , Pengfei Han , Yi Zhang
Applied Mathematics Letters ( IF 2.9 ) Pub Date : 2024-09-03 , DOI: 10.1016/j.aml.2024.109293 Feng Zhang , Xiangpeng Xin , Pengfei Han , Yi Zhang
Using the ∂ ̄ -dressing method, we study the general reverse-space nonlocal nonlinear Schrödinger (nNLS) equation. Beginning with a 3 × 3 matrix ∂ ̄ -problem, the associated spatial and time spectral problems are obtained through two linear constraint equations. Furthermore, the gauge equivalence between the Heisenberg chain equation and the general reverse-space nNLS equation is established. By employing a recursive operator, a hierarchy for the general reverse-space nNLS equation is proposed. Moreover, by selecting a suitable spectral transformation matrix, the N -soliton solutions of the general reverse-space nNLS equation are calculated, yielding the explicit one-soliton and two-soliton solutions.
中文翻译:
一般逆空间非局部非线性薛定谔方程的 [公式省略] -修整方法和 [公式省略] -孤子解
使用 ∂̄ 敷料方法,我们研究了一般的逆空间非局部非线性薛定谔 (nNLS) 方程。从 3 × 3 矩阵 ∂̄ 问题开始,通过两个线性约束方程获得相关的空间和时间谱问题。此外,建立了 Heisenberg 链方程和一般逆空间 nNLS 方程之间的规范等效性。通过使用递归运算符,提出了一般反空间 nNLS 方程的层次结构。此外,通过选择合适的光谱变换矩阵,计算出一般反空间 nNLS 方程的 N 孤子解,得到明确的单孤子和双孤子解。
更新日期:2024-09-03
中文翻译:
一般逆空间非局部非线性薛定谔方程的 [公式省略] -修整方法和 [公式省略] -孤子解
使用 ∂̄ 敷料方法,我们研究了一般的逆空间非局部非线性薛定谔 (nNLS) 方程。从 3 × 3 矩阵 ∂̄ 问题开始,通过两个线性约束方程获得相关的空间和时间谱问题。此外,建立了 Heisenberg 链方程和一般逆空间 nNLS 方程之间的规范等效性。通过使用递归运算符,提出了一般反空间 nNLS 方程的层次结构。此外,通过选择合适的光谱变换矩阵,计算出一般反空间 nNLS 方程的 N 孤子解,得到明确的单孤子和双孤子解。