Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Spatial Measurement and Inhibition of Calpain Activity in Traumatic Brain Injury with an Activity-Based Nanotheranostic Platform
ACS Nano ( IF 15.8 ) Pub Date : 2024-09-05 , DOI: 10.1021/acsnano.4c06052 Marianne I Madias 1 , Lilyane N Stessman 1 , Sophia J Warlof 1 , Julia A Kudryashev 1 , Ester J Kwon 1
ACS Nano ( IF 15.8 ) Pub Date : 2024-09-05 , DOI: 10.1021/acsnano.4c06052 Marianne I Madias 1 , Lilyane N Stessman 1 , Sophia J Warlof 1 , Julia A Kudryashev 1 , Ester J Kwon 1
Affiliation
Traumatic brain injury (TBI) is a major public health concern that can result in long-term neurological impairments. Calpain is a calcium-dependent cysteine protease that is activated within minutes after TBI, and sustained calpain activation is known to contribute to neurodegeneration and blood–brain barrier dysregulation. Based on its role in disease progression, calpain inhibition has been identified as a promising therapeutic target. Efforts to develop therapeutics for calpain inhibition would benefit from the ability to measure calpain activity with spatial precision within the injured tissue. In this work, we designed an activity-based nanotheranostic (ABNT) that can both sense and inhibit calpain activity in TBI. To sense calpain activity, we incorporated a peptide substrate of calpain flanked by a fluorophore/quencher pair. To inhibit calpain activity, we incorporated calpastatin peptide, an endogenous inhibitor of calpain. Both sensor and inhibitor peptides were scaffolded onto a polymeric nanoscaffold to create our ABNT. We show that in the presence of recombinant calpain, our ABNT construct is able to sense and inhibit calpain activity. In a mouse model of TBI, systemically administered ABNT can access perilesional brain tissue through passive accumulation and inhibit calpain activity in the cortex and hippocampus. In an analysis of cellular calpain activity, we observe the ABNT-mediated inhibition of calpain activity in neurons, endothelial cells, and microglia of the cortex. In a comparison of neuronal calpain activity by brain structure, we observe greater ABNT-mediated inhibition of calpain activity in cortical neurons compared to that in hippocampal neurons. Furthermore, we found that apoptosis was dependent on both calpain inhibition and brain structure. We present a theranostic platform that can be used to understand the regional and cell-specific therapeutic inhibition of calpain activity to help inform drug design for TBI.
中文翻译:
使用基于活动的纳米治疗平台对创伤性脑损伤中钙蛋白酶活性进行空间测量和抑制
创伤性脑损伤(TBI)是一个主要的公共卫生问题,可能导致长期的神经损伤。钙蛋白酶是一种钙依赖性半胱氨酸蛋白酶,在 TBI 后几分钟内就会激活,已知钙蛋白酶持续激活会导致神经退行性变和血脑屏障失调。基于其在疾病进展中的作用,钙蛋白酶抑制已被确定为有前途的治疗靶点。开发钙蛋白酶抑制疗法的努力将受益于在受损组织内以空间精度测量钙蛋白酶活性的能力。在这项工作中,我们设计了一种基于活性的纳米治疗(ABNT),它可以感知和抑制 TBI 中的钙蛋白酶活性。为了检测钙蛋白酶活性,我们掺入了侧翼为荧光团/猝灭剂对的钙蛋白酶肽底物。为了抑制钙蛋白酶活性,我们加入了钙蛋白酶肽,一种钙蛋白酶的内源性抑制剂。传感器肽和抑制剂肽都被支架到聚合物纳米支架上以创建我们的 ABNT。我们证明,在重组钙蛋白酶存在的情况下,我们的 ABNT 构建体能够感知并抑制钙蛋白酶活性。在 TBI 小鼠模型中,全身施用 ABNT 可以通过被动积累进入病灶周围脑组织,并抑制皮质和海马中的钙蛋白酶活性。在对细胞钙蛋白酶活性的分析中,我们观察到 ABNT 介导的对神经元、内皮细胞和皮质小胶质细胞中钙蛋白酶活性的抑制。在按大脑结构比较神经元钙蛋白酶活性时,我们观察到与海马神经元相比,ABNT 介导的皮质神经元对钙蛋白酶活性的抑制更大。此外,我们发现细胞凋亡依赖于钙蛋白酶抑制和大脑结构。 我们提出了一个治疗诊断平台,可用于了解钙蛋白酶活性的区域和细胞特异性治疗抑制,以帮助为 TBI 药物设计提供信息。
更新日期:2024-09-05
中文翻译:
使用基于活动的纳米治疗平台对创伤性脑损伤中钙蛋白酶活性进行空间测量和抑制
创伤性脑损伤(TBI)是一个主要的公共卫生问题,可能导致长期的神经损伤。钙蛋白酶是一种钙依赖性半胱氨酸蛋白酶,在 TBI 后几分钟内就会激活,已知钙蛋白酶持续激活会导致神经退行性变和血脑屏障失调。基于其在疾病进展中的作用,钙蛋白酶抑制已被确定为有前途的治疗靶点。开发钙蛋白酶抑制疗法的努力将受益于在受损组织内以空间精度测量钙蛋白酶活性的能力。在这项工作中,我们设计了一种基于活性的纳米治疗(ABNT),它可以感知和抑制 TBI 中的钙蛋白酶活性。为了检测钙蛋白酶活性,我们掺入了侧翼为荧光团/猝灭剂对的钙蛋白酶肽底物。为了抑制钙蛋白酶活性,我们加入了钙蛋白酶肽,一种钙蛋白酶的内源性抑制剂。传感器肽和抑制剂肽都被支架到聚合物纳米支架上以创建我们的 ABNT。我们证明,在重组钙蛋白酶存在的情况下,我们的 ABNT 构建体能够感知并抑制钙蛋白酶活性。在 TBI 小鼠模型中,全身施用 ABNT 可以通过被动积累进入病灶周围脑组织,并抑制皮质和海马中的钙蛋白酶活性。在对细胞钙蛋白酶活性的分析中,我们观察到 ABNT 介导的对神经元、内皮细胞和皮质小胶质细胞中钙蛋白酶活性的抑制。在按大脑结构比较神经元钙蛋白酶活性时,我们观察到与海马神经元相比,ABNT 介导的皮质神经元对钙蛋白酶活性的抑制更大。此外,我们发现细胞凋亡依赖于钙蛋白酶抑制和大脑结构。 我们提出了一个治疗诊断平台,可用于了解钙蛋白酶活性的区域和细胞特异性治疗抑制,以帮助为 TBI 药物设计提供信息。