Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Single-cell chromatin accessibility reveals malignant regulatory programs in primary human cancers.
Science ( IF 44.7 ) Pub Date : 2024-09-06 , DOI: 10.1126/science.adk9217 Laksshman Sundaram 1, 2, 3, 4 , Arvind Kumar 3 , Matthew Zatzman 5 , Adriana Salcedo 3 , Neal Ravindra 3 , Shadi Shams 1, 6, 7 , Bryan H Louie 6, 7 , S Tansu Bagdatli 1, 6, 7 , Matthew A Myers 5 , Shahab Sarmashghi 8 , Hyo Young Choi 9, 10 , Won-Young Choi 11 , Kathryn E Yost 6, 7 , Yanding Zhao 1, 6, 7 , Jeffrey M Granja 1 , Toshinori Hinoue 12 , D Neil Hayes 9, 10, 11 , Andrew Cherniack 8 , Ina Felau 13 , Hani Choudhry 14 , Jean C Zenklusen 13 , Kyle Kai-How Farh 3 , Andrew McPherson 5 , Christina Curtis 1, 7, 15, 16, 17 , Peter W Laird 12 , , John A Demchok 18 , Liming Yang 18 , Roy Tarnuzzer 18 , Samantha J Caesar-Johnson 18 , Zhining Wang 19 , Ashley S Doane 20 , Ekta Khurana 20, 21, 22, 23 , Mauro A A Castro 24 , Alexander J Lazar 25 , Bradley M Broom 26 , John N Weinstein 26, 27 , Rehan Akbani 26 , Shwetha V Kumar 26 , Benjamin J Raphael 28 , Christopher K Wong 29 , Joshua M Stuart 29 , Rojin Safavi 29 , Christopher C Benz 30 , Benjamin K Johnson 12 , Cindy Kyi 18 , Hui Shen 12 , M Ryan Corces 6, 31, 32, 33 , Howard Y Chang 1, 6, 7, 34 , William J Greenleaf 1, 7, 35
Science ( IF 44.7 ) Pub Date : 2024-09-06 , DOI: 10.1126/science.adk9217 Laksshman Sundaram 1, 2, 3, 4 , Arvind Kumar 3 , Matthew Zatzman 5 , Adriana Salcedo 3 , Neal Ravindra 3 , Shadi Shams 1, 6, 7 , Bryan H Louie 6, 7 , S Tansu Bagdatli 1, 6, 7 , Matthew A Myers 5 , Shahab Sarmashghi 8 , Hyo Young Choi 9, 10 , Won-Young Choi 11 , Kathryn E Yost 6, 7 , Yanding Zhao 1, 6, 7 , Jeffrey M Granja 1 , Toshinori Hinoue 12 , D Neil Hayes 9, 10, 11 , Andrew Cherniack 8 , Ina Felau 13 , Hani Choudhry 14 , Jean C Zenklusen 13 , Kyle Kai-How Farh 3 , Andrew McPherson 5 , Christina Curtis 1, 7, 15, 16, 17 , Peter W Laird 12 , , John A Demchok 18 , Liming Yang 18 , Roy Tarnuzzer 18 , Samantha J Caesar-Johnson 18 , Zhining Wang 19 , Ashley S Doane 20 , Ekta Khurana 20, 21, 22, 23 , Mauro A A Castro 24 , Alexander J Lazar 25 , Bradley M Broom 26 , John N Weinstein 26, 27 , Rehan Akbani 26 , Shwetha V Kumar 26 , Benjamin J Raphael 28 , Christopher K Wong 29 , Joshua M Stuart 29 , Rojin Safavi 29 , Christopher C Benz 30 , Benjamin K Johnson 12 , Cindy Kyi 18 , Hui Shen 12 , M Ryan Corces 6, 31, 32, 33 , Howard Y Chang 1, 6, 7, 34 , William J Greenleaf 1, 7, 35
Affiliation
To identify cancer-associated gene regulatory changes, we generated single-cell chromatin accessibility landscapes across eight tumor types as part of The Cancer Genome Atlas. Tumor chromatin accessibility is strongly influenced by copy number alterations that can be used to identify subclones, yet underlying cis-regulatory landscapes retain cancer type-specific features. Using organ-matched healthy tissues, we identified the "nearest healthy" cell types in diverse cancers, demonstrating that the chromatin signature of basal-like-subtype breast cancer is most similar to secretory-type luminal epithelial cells. Neural network models trained to learn regulatory programs in cancer revealed enrichment of model-prioritized somatic noncoding mutations near cancer-associated genes, suggesting that dispersed, nonrecurrent, noncoding mutations in cancer are functional. Overall, these data and interpretable gene regulatory models for cancer and healthy tissue provide a framework for understanding cancer-specific gene regulation.
中文翻译:
单细胞染色质可及性揭示了原发性人类癌症中的恶性调节程序。
为了识别癌症相关基因调控变化,我们生成了八种肿瘤类型的单细胞染色质可及性景观,作为癌症基因组图谱的一部分。肿瘤染色质可及性受可用于识别亚克隆的拷贝数改变的强烈影响,但潜在的顺式调节景观保留了癌症类型特异性特征。使用器官匹配的健康组织,我们确定了不同癌症中“最接近健康”的细胞类型,证明基底样亚型乳腺癌的染色质特征与分泌型管腔上皮细胞最相似。经过训练学习癌症调节程序的神经网络模型揭示了癌症相关基因附近模型优先体细胞非编码突变的富集,这表明癌症中分散的、非复发的、非编码的突变是功能性的。总体而言,这些数据以及癌症和健康组织的可解释基因调控模型为理解癌症特异性基因调控提供了一个框架。
更新日期:2024-09-06
中文翻译:
单细胞染色质可及性揭示了原发性人类癌症中的恶性调节程序。
为了识别癌症相关基因调控变化,我们生成了八种肿瘤类型的单细胞染色质可及性景观,作为癌症基因组图谱的一部分。肿瘤染色质可及性受可用于识别亚克隆的拷贝数改变的强烈影响,但潜在的顺式调节景观保留了癌症类型特异性特征。使用器官匹配的健康组织,我们确定了不同癌症中“最接近健康”的细胞类型,证明基底样亚型乳腺癌的染色质特征与分泌型管腔上皮细胞最相似。经过训练学习癌症调节程序的神经网络模型揭示了癌症相关基因附近模型优先体细胞非编码突变的富集,这表明癌症中分散的、非复发的、非编码的突变是功能性的。总体而言,这些数据以及癌症和健康组织的可解释基因调控模型为理解癌症特异性基因调控提供了一个框架。