当前位置:
X-MOL 学术
›
J. Chem. Theory Comput.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Quantum Dynamics from Classical Trajectories
Journal of Chemical Theory and Computation ( IF 5.7 ) Pub Date : 2024-09-05 , DOI: 10.1021/acs.jctc.4c00783 Rafael S. Mattos 1 , Saikat Mukherjee 1, 2 , Mario Barbatti 1, 3
Journal of Chemical Theory and Computation ( IF 5.7 ) Pub Date : 2024-09-05 , DOI: 10.1021/acs.jctc.4c00783 Rafael S. Mattos 1 , Saikat Mukherjee 1, 2 , Mario Barbatti 1, 3
Affiliation
Nonadiabatic molecular dynamics plays an essential role in exploring the time evolution of molecular systems. Various methods have been developed for this study, with varying accuracy and computational cost. One very successful among them is trajectory surface hopping, which propagates nuclei as classical trajectories using forces from a quantum description of the electrons and incorporates nonadiabatic effects through stochastic state changes during each trajectory propagation. A statistical analysis of an ensemble of the independent trajectories recovers the simulated system’s behavior. This approach can give good results, but it is known to overlook nuclear quantum effects, leading to inaccurate predictions. Here, we present quantum dynamics from classical trajectories (QDCT), a new protocol to recover the quantum wavepacket from the classical trajectories generated by surface hopping. In this first QDCT implementation, we apply it to recover results at the multiple spawning level from postprocessing surface hopping precomputed trajectories. With a series of examples, we demonstrate QDCT’s potential to improve the accuracy of the dynamics, correct decoherence effects, and diagnose problems or increase confidence in surface hopping results. All that comes at virtually no computational cost since no new electronic calculation is required.
中文翻译:
经典轨迹的量子动力学
非绝热分子动力学在探索分子系统的时间演化中起着至关重要的作用。本研究开发了各种方法,其精度和计算成本各不相同。其中非常成功的是轨迹表面跳跃,它利用电子量子描述中的力将原子核作为经典轨迹传播,并通过每个轨迹传播期间的随机状态变化结合非绝热效应。对独立轨迹集合的统计分析可以恢复模拟系统的行为。这种方法可以给出良好的结果,但众所周知,它会忽略核量子效应,从而导致预测不准确。在这里,我们提出了经典轨迹量子动力学(QDCT),这是一种从表面跳跃生成的经典轨迹中恢复量子波包的新协议。在第一个 QDCT 实现中,我们应用它从后处理表面跳跃预计算轨迹中恢复多个生成级别的结果。通过一系列示例,我们展示了 QDCT 在提高动力学精度、纠正退相干效应以及诊断问题或提高表面跳跃结果可信度方面的潜力。所有这些几乎不需要任何计算成本,因为不需要新的电子计算。
更新日期:2024-09-05
中文翻译:
经典轨迹的量子动力学
非绝热分子动力学在探索分子系统的时间演化中起着至关重要的作用。本研究开发了各种方法,其精度和计算成本各不相同。其中非常成功的是轨迹表面跳跃,它利用电子量子描述中的力将原子核作为经典轨迹传播,并通过每个轨迹传播期间的随机状态变化结合非绝热效应。对独立轨迹集合的统计分析可以恢复模拟系统的行为。这种方法可以给出良好的结果,但众所周知,它会忽略核量子效应,从而导致预测不准确。在这里,我们提出了经典轨迹量子动力学(QDCT),这是一种从表面跳跃生成的经典轨迹中恢复量子波包的新协议。在第一个 QDCT 实现中,我们应用它从后处理表面跳跃预计算轨迹中恢复多个生成级别的结果。通过一系列示例,我们展示了 QDCT 在提高动力学精度、纠正退相干效应以及诊断问题或提高表面跳跃结果可信度方面的潜力。所有这些几乎不需要任何计算成本,因为不需要新的电子计算。