当前位置:
X-MOL 学术
›
J. Mater. Sci. Technol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Realizing overall trade-off of barocaloric performances in 1-bromoadamantane-graphene composites
Journal of Materials Science & Technology ( IF 11.2 ) Pub Date : 2024-09-06 , DOI: 10.1016/j.jmst.2024.08.019 Changjiang Bao , Ziqi Guan , Zhenzhuang Li , Haoyu Wang , Yuanwen Feng , Qing Guo , Kun Zhang , Yanxu Wang , Liang Zuo , Bing Li
Journal of Materials Science & Technology ( IF 11.2 ) Pub Date : 2024-09-06 , DOI: 10.1016/j.jmst.2024.08.019 Changjiang Bao , Ziqi Guan , Zhenzhuang Li , Haoyu Wang , Yuanwen Feng , Qing Guo , Kun Zhang , Yanxu Wang , Liang Zuo , Bing Li
Barocaloric materials have attracted extensive attention for their promising applications in low-carbon refrigeration technology. Given that the performances of barocaloric materials are intrinsically and even inversely correlated, an overall trade-off is necessitated. Here, we have prepared the 1-bromoadamantane-graphene composite (15 wt.% graphene), whose pressure-induced entropy change, pressure-induced adiabatic temperature change, and thermal hysteresis nearly remain unchanged. The pressure-induced adiabatic temperature change is comparable to the prototype neopentylglycol while the thermal hysteresis is much smaller. More importantly, by incorporating the additive the thermal conductivity has been elevated by 10 times. Such a combination renders the composite state-of-the-art barocaloric performances and is expected to benefit the design of barocaloric refrigeration technology.
中文翻译:
实现 1-溴金刚烷-石墨烯复合材料中压力热性能的整体权衡
压力热材料因其在低碳制冷技术中的广泛应用而受到广泛关注。鉴于气压热材料的性能在内在甚至负相关方面是相互的,因此需要进行整体权衡。在这里,我们制备了 1-溴金刚烷-石墨烯复合材料 (15 wt.% 石墨烯),其压力诱导的熵变、压力诱导的绝热温度变化和热滞后几乎保持不变。压力诱导的绝热温度变化与原型新戊二醇相当,而热滞后要小得多。更重要的是,通过加入添加剂,导热系数提高了 10 倍。这种组合提供了最先进的复合气热性能,并有望有利于气热制冷技术的设计。
更新日期:2024-09-06
中文翻译:
实现 1-溴金刚烷-石墨烯复合材料中压力热性能的整体权衡
压力热材料因其在低碳制冷技术中的广泛应用而受到广泛关注。鉴于气压热材料的性能在内在甚至负相关方面是相互的,因此需要进行整体权衡。在这里,我们制备了 1-溴金刚烷-石墨烯复合材料 (15 wt.% 石墨烯),其压力诱导的熵变、压力诱导的绝热温度变化和热滞后几乎保持不变。压力诱导的绝热温度变化与原型新戊二醇相当,而热滞后要小得多。更重要的是,通过加入添加剂,导热系数提高了 10 倍。这种组合提供了最先进的复合气热性能,并有望有利于气热制冷技术的设计。