当前位置: X-MOL 学术Macromolecules › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Investigating the Water-Induced Stiffening Mechanism in a Novel Polyurethane through Simulation and Experimental Analysis
Macromolecules ( IF 5.1 ) Pub Date : 2024-09-05 , DOI: 10.1021/acs.macromol.4c01001
Ao Wang 1 , Wenkai Liu 1 , Xiaohan Jin 2 , Hecheng Wu 1 , Dongfei Zhang 1 , Xianglong Han 2 , Yang Liu 1 , Zhen Li 1 , Mingming Ding 1 , Jiehua Li 1 , Hong Tan 1
Affiliation  

Much attention has been drawn to our previously reported polyurethane featuring a hard backbone and dangling poly(ethylene glycol) (PEG) soft segment. It is endowed with a unique self-stiffening property when exposed to water. Yet the mechanism from a molecular perspective is still not quite clear. Herein, coarse-grained (CG) and all-atom (AA) molecular dynamics (MD) simulations, alongside experimental approaches, have been employed to unravel the mechanism behind the phenomenon. It is confirmed that water could induce the polyurethane to achieve a higher degree of phase separation. When being stretched, hard domains of aqueous side chain PEG polyurethane (SPPU) have a stronger tendency to orient in the direction of tensile stress and facilitate the effective transfer of stress. This enhancement effect of water-stiffening cannot be achieved at an insufficient side chain density. The ratio of hydrogen bonds in the SPPU exhibited a higher degree of enhancement with water content, which is in accordance with experimental results. The unique topology of SPPU was considered to be the most important factor to the Young’s modulus determined by the gradient boosting regression (GBR) model. This research helps to advance our comprehension of the interplay between the structure and performance of polyurethane, providing a theoretical foundation for the design of a novel material.

中文翻译:


通过模拟和实验分析研究新型聚氨酯中的水致硬化机制



我们之前报道的具有硬主链和悬挂聚乙二醇 (PEG) 软链段的聚氨酯引起了很多关注。当接触水时,它具有独特的自硬性。然而,从分子角度来看,其机制仍不太清楚。在此,粗粒度(CG)和全原子(AA)分子动力学(MD)模拟以及实验方法已被用来揭示该现象背后的机制。已证实水可以促使聚氨酯实现更高程度的相分离。当拉伸时,水性侧链聚乙二醇聚氨酯(SPPU)的硬域有更强的向拉应力方向取向的倾向,有利于应力的有效传递。当侧链密度不足时,无法实现这种水硬化的增强效果。 SPPU中氢键的比例随着水含量的增加而呈现出更高程度的增强,这与实验结果一致。 SPPU独特的拓扑结构被认为是梯度增强回归(GBR)模型确定杨氏模量的最重要因素。这项研究有助于加深我们对聚氨酯结构和性能之间相互作用的理解,为新型材料的设计提供理论基础。
更新日期:2024-09-05
down
wechat
bug