Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Room Temperature Single-Component Organic Multiferroics with Large Magnetoelectric Coupling: Proficient Approach for Stray-Magnetic Field Harvesting
Small ( IF 13.0 ) Pub Date : 2024-09-06 , DOI: 10.1002/smll.202405248 Deepak 1 , Dalip Saini 2 , Sudip Naskar 2 , Dipankar Mandal 2 , Raj Kumar Roy 1
Small ( IF 13.0 ) Pub Date : 2024-09-06 , DOI: 10.1002/smll.202405248 Deepak 1 , Dalip Saini 2 , Sudip Naskar 2 , Dipankar Mandal 2 , Raj Kumar Roy 1
Affiliation
Magnetoelectric materials are highly desirable for technological applications due to their ability to produce electricity under a magnetic field. Among the various types of magnetoelectric materials studied, their organic counterparts provide an opportunity to develop solution-processable, flexible, lightweight, and wearable electronic devices. However, there is a rare choice of solution-processable, flexible, lightweight magnetoelectric materials which has tremendous technological interest. A supramolecular scaffold with precisely positioned structure-forming and functional units (electrical dipoles and magnetic spins) is designed so that self-assembly results in functional unit organization. Structure-forming segments allow these scaffolds to self-assemble into hierarchically ordered structures in nonpolar solvents, creating nanofibrous organogel networks. In particular, the xerogel derived from this organogel exhibits the highest magnetoelectric coupling coefficient (αME ≈ 216 mV Oe−1 cm−1) reported to date for organic materials. This is even greater than commonly envisioned composite materials made of piezoelectric polymers and inorganic magnets. This single-component organic multiferroic material displays ferroelectricity (Tc ≈ 46 °C) and paramagnetic behavior at room temperature. With this, it is demonstrated that the possibilities of effectively harvesting stray magnetic fields that are copiously available in the surroundings and wasted otherwise.
中文翻译:
具有大型磁电耦合的室温单组分有机多铁性器件:杂散磁场收集的熟练方法
磁电材料非常适用于技术应用,因为它们能够在磁场下发电。在研究的各种类型的磁电材料中,它们的有机对应物为开发可溶液加工、柔性、轻质和可穿戴的电子设备提供了机会。然而,有一种罕见的可溶液加工、柔性、轻质磁电材料的选择,它具有巨大的技术价值。设计了具有精确定位的结构形成和功能单元(电偶极子和磁自旋)的超分子支架,以便自组装导致功能单元组织。结构形成链段允许这些支架在非极性溶剂中自组装成分层有序的结构,从而形成纳米纤维有机凝胶网络。特别是,从这种有机凝胶衍生的干凝胶表现出迄今为止报道的有机材料中最高的磁电耦合系数 (αME ≈ 216 mV Oe-1 cm-1)。这甚至比通常设想的由压电聚合物和无机磁体制成的复合材料还要大。这种单组分有机多铁材料在室温下表现出铁电性 (TC ≈ 46 °C) 和顺磁性行为。由此,证明了有效收集周围环境中大量可用而浪费的杂散磁场的可能性。
更新日期:2024-09-06
中文翻译:
具有大型磁电耦合的室温单组分有机多铁性器件:杂散磁场收集的熟练方法
磁电材料非常适用于技术应用,因为它们能够在磁场下发电。在研究的各种类型的磁电材料中,它们的有机对应物为开发可溶液加工、柔性、轻质和可穿戴的电子设备提供了机会。然而,有一种罕见的可溶液加工、柔性、轻质磁电材料的选择,它具有巨大的技术价值。设计了具有精确定位的结构形成和功能单元(电偶极子和磁自旋)的超分子支架,以便自组装导致功能单元组织。结构形成链段允许这些支架在非极性溶剂中自组装成分层有序的结构,从而形成纳米纤维有机凝胶网络。特别是,从这种有机凝胶衍生的干凝胶表现出迄今为止报道的有机材料中最高的磁电耦合系数 (αME ≈ 216 mV Oe-1 cm-1)。这甚至比通常设想的由压电聚合物和无机磁体制成的复合材料还要大。这种单组分有机多铁材料在室温下表现出铁电性 (TC ≈ 46 °C) 和顺磁性行为。由此,证明了有效收集周围环境中大量可用而浪费的杂散磁场的可能性。