Light: Science & Applications ( IF 20.6 ) Pub Date : 2024-09-06 , DOI: 10.1038/s41377-024-01585-0 Sang Ho Suk 1 , Sanghee Nah 2 , Muhammad Sajjad 3, 4 , Sung Bok Seo 1 , Jianxiang Chen 1 , Sangwan Sim 1
In cutting-edge optical technologies, polarization is a key for encoding and transmitting vast information, highlighting the importance of selectively switching and modulating polarized light. Recently, anisotropic two-dimensional materials have emerged for ultrafast switching of polarization-multiplexed optical signals, but face challenges with low polarization ratios and limited spectral ranges. Here, we apply strain to quasi-one-dimensional layered ZrSe3 to enhance polarization selectivity and tune operational energies in ultrafast all-optical switching. Initially, transient absorption on unstrained ZrSe3 reveals a sub-picosecond switching response in polarization along a specific crystal axis, attributed to shifting-recovery dynamics of an anisotropic exciton. However, its polarization selectivity is weakened by a slow non-excitonic response in the perpendicular polarization. To overcome this limitation, we apply strain to ZrSe3 by bending its flexible substrate. The compressive strain spectrally decouples the excitonic and non-excitonic components, doubling the polarization selectivity of the sub-picosecond switching and tripling it compared to that in the tensile-strained ZrSe3. It also effectively tunes the switching energy at a shift rate of ~93 meV %-1. This strain-tunable switching is repeatable, reversible, and robustly maintains the sub-picosecond operation. First-principles calculations reveal that the strain control is enabled by momentum- and band-dependent modulations of the electronic band structure, causing opposite shifts in the excitonic and non-excitonic transitions. Our findings offer a novel approach for high-performance, wavelength-tunable, polarization-selective ultrafast optical switching.
中文翻译:
通过准 1D ZrSe3 中的各向异性激子动力学实现亚皮秒、应变可调、偏振选择性光学开关
在尖端光学技术中,偏振是编码和传输大量信息的关键,凸显了选择性切换和调制偏振光的重要性。最近,出现了用于偏振复用光信号超快切换的各向异性二维材料,但面临着低偏振比和有限光谱范围的挑战。在这里,我们对准一维层状 ZrSe 3施加应变,以增强偏振选择性并调整超快全光开关中的操作能量。最初,无应变 ZrSe 3上的瞬态吸收揭示了沿特定晶轴偏振的亚皮秒切换响应,这归因于各向异性激子的位移恢复动力学。然而,其偏振选择性因垂直偏振中的缓慢非激子响应而减弱。为了克服这一限制,我们通过弯曲 ZrSe 3的柔性基板对其施加应变。压缩应变在光谱上解耦激子和非激子分量,使亚皮秒切换的偏振选择性加倍,并且与拉伸应变 ZrSe 3相比增加了三倍。它还以~93 meV % -1的转换率有效地调节开关能量。这种应变可调的切换是可重复的、可逆的,并且能够稳定地维持亚皮秒操作。第一性原理计算表明,应变控制是通过电子能带结构的动量和能带相关调制实现的,从而导致激子和非激子跃迁发生相反的变化。 我们的研究结果为高性能、波长可调、偏振选择性超快光开关提供了一种新颖的方法。