当前位置: X-MOL 学术J. Mater. Chem. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Unraveling electrochemo-mechanical aspects of core–shell composite cathode for sulfide based all-solid-state batteries
Journal of Materials Chemistry A ( IF 10.7 ) Pub Date : 2024-09-06 , DOI: 10.1039/d4ta04063e
Su Cheol Han 1 , Mukarram Ali 1, 2 , Yoon Jun Kim 1, 3 , Jun-Ho Park 1, 2 , You-Jin Lee 1 , Jun-Woo Park 1, 2 , Heetaek Park 1 , Gumjae Park 1 , Eungje Lee 4 , Byung Gon Kim 5 , Yoon-Cheol Ha 1, 2
Affiliation  

All-solid-state lithium batteries (ASSLBs) are emerging as promising next-generation batteries for electric vehicles owing to their high energy densities and safety features. However, challenges such as inadequate material percolation and low cathode utilization often hinder their potential. This paper presents a core–shell approach to optimize the cathode active material (CAM) utilization. The resultant CAM composite showed high ionic conductivity, a highly dense microstructure with <10% porosity, and minimal stack pressure changes during electrochemical cycling. The maximum CAM utilization was achieved while effectively mitigating electrochemo-mechanical side reactions by applying a uniformly coated Li6PS5Cl solid electrolyte layer (≈500 nm) and a LiNbO3 buffer layer (≈10 nm) onto LiNi0.8Mn0.1Co0.1O2 particles (LPSCl@LNO@NMC). The engineered LPSCl@LNO@NMC composites, which incorporated a 5 wt% LPSCl coating on LNO@NMC powders, exhibited a dense microstructure that enhanced the mechanical stability at the cathode. Sulfide-based solid electrolyte (SSE)/SSE contact provided better ionic pathways within the composite and increased CAM utilization. Thus, an enhanced reversible capacity (197 mA h g−1) and exceptional high-rate cycling performance (86.3% capacity retention after 1000 cycles at 2C) were observed. These findings pave the way for the advancement and commercialization of high-performance ASSLBs.

中文翻译:


揭示硫化物基全固态电池核壳复合阴极的电化学机械方面



全固态锂电池(ASSLB)由于其高能量密度和安全特性而成为有前途的下一代电动汽车电池。然而,材料渗透不足和阴极利用率低等挑战往往阻碍了它们的潜力。本文提出了一种优化正极活性材料(CAM)利用率的核壳方法。所得的 CAM 复合材料表现出高离子电导率、具有 <10% 孔隙率的高致密微观结构以及电化学循环过程中最小的堆压变化。通过在LiNi 0.8 Mn 0.1 Co 0.1上均匀涂覆Li 6 PS 5 Cl固体电解质层(约500 nm)和LiNbO 3缓冲层(约10 nm),实现了CAM利用率的最大化,同时有效地减轻了电化学机械副反应。 O 2粒子(LPSCl@LNO@NMC)。工程化的 LPSCl@LNO@NMC 复合材料在 LNO@NMC 粉末上结合了 5 wt% LPSCl 涂层,表现出致密的微观结构,增强了阴极的机械稳定性。硫化物基固体电解质 (SSE)/SSE 接触在复合材料内提供了更好的离子通道,并提高了 CAM 利用率。因此,观察到增强的可逆容量(197 mA hg -1 )和出色的高倍率循环性能(2C下1000次循环后容量保持率为86.3%)。这些发现为高性能 ASSLB 的进步和商业化铺平了道路。
更新日期:2024-09-11
down
wechat
bug