当前位置:
X-MOL 学术
›
Chem. Soc. Rev.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Active template synthesis
Chemical Society Reviews ( IF 40.4 ) Pub Date : 2024-09-05 , DOI: 10.1039/d4cs00430b Romain Jamagne 1 , Martin J Power 1 , Zhi-Hui Zhang 2 , Germán Zango 1 , Benjamin Gibber 1 , David A Leigh 1, 2
Chemical Society Reviews ( IF 40.4 ) Pub Date : 2024-09-05 , DOI: 10.1039/d4cs00430b Romain Jamagne 1 , Martin J Power 1 , Zhi-Hui Zhang 2 , Germán Zango 1 , Benjamin Gibber 1 , David A Leigh 1, 2
Affiliation
The active template synthesis of mechanically interlocked molecular architectures exploits the dual ability of various structural elements (metals or, in the case of metal-free active template synthesis, particular arrangements of functional groups) to serve as both a template for the organisation of building blocks and as a catalyst to facilitate the formation of covalent bonds between them. This enables the entwined or threaded intermediate structure to be covalently captured under kinetic control. Unlike classical passive template synthesis, the intercomponent interactions transiently used to promote the assembly typically do not ‘live on’ in the interlocked product, meaning that active template synthesis can be traceless and used for constructing mechanically interlocked molecules that do not feature strong binding interactions between the components. Since its introduction in 2006, active template synthesis has been used to prepare a variety of rotaxanes, catenanes and knots. Amongst the metal–ion-mediated versions of the strategy, the copper(I)-catalysed alkyne–azide cycloaddition (CuAAC) remains the most extensively used transformation, although a broad range of other catalytic reactions and transition metals also provide effective manifolds. In metal-free active template synthesis, the recent discovery of the acceleration of the reaction of primary amines with electrophiles through the cavity of crown ethers has proved effective for forming an array of rotaxanes without recognition elements, including compact rotaxane superbases, dissipatively assembled rotaxanes and molecular pumps. This Review details the active template concept, outlines its advantages and limitations for the synthesis of interlocked molecules, and charts the diverse set of reactions that have been used with this strategy to date. The application of active template synthesis in various domains is discussed, including molecular machinery, mechanical chirality, catalysis, molecular recognition and various aspects of materials science.
中文翻译:
主动模板合成
机械互锁分子结构的活性模板合成利用各种结构元素(金属,或者在无金属活性模板合成的情况下,官能团的特定排列)的双重能力,既可以作为构建单元组织的模板,也可以作为促进它们之间形成共价键的催化剂。这使得缠绕或螺纹的中间结构能够在动力学控制下被共价捕获。与经典的被动模板合成不同,瞬时用于促进组装的组分间相互作用通常不会在互锁产物中“存在”,这意味着主动模板合成可以是无痕的,并用于构建机械互锁分子,这些分子在组分之间不具有强结合相互作用。自 2006 年推出以来,活性模板合成已用于制备各种轮烷、链烷和结。在该策略的金属离子介导版本中,铜 () 催化的炔烃-叠氮化物环加成反应 (CuAAC) 仍然是使用最广泛的转化,尽管广泛的其他催化反应和过渡金属也提供了有效的歧管。在无金属活性模板合成中,最近发现的伯胺与亲电试剂通过冠醚空腔的反应加速,已被证明可以有效地形成一系列没有识别元件的轮烷,包括致密的轮烷超碱、耗散组装的轮烷和分子泵。 本综述详细介绍了活性模板概念,概述了其在合成互锁分子方面的优势和局限性,并绘制了迄今为止与该策略一起使用的各种反应集。讨论了活性模板合成在各个领域的应用,包括分子机械、机械手性、催化、分子识别和材料科学的各个方面。
更新日期:2024-09-05
中文翻译:
主动模板合成
机械互锁分子结构的活性模板合成利用各种结构元素(金属,或者在无金属活性模板合成的情况下,官能团的特定排列)的双重能力,既可以作为构建单元组织的模板,也可以作为促进它们之间形成共价键的催化剂。这使得缠绕或螺纹的中间结构能够在动力学控制下被共价捕获。与经典的被动模板合成不同,瞬时用于促进组装的组分间相互作用通常不会在互锁产物中“存在”,这意味着主动模板合成可以是无痕的,并用于构建机械互锁分子,这些分子在组分之间不具有强结合相互作用。自 2006 年推出以来,活性模板合成已用于制备各种轮烷、链烷和结。在该策略的金属离子介导版本中,铜 () 催化的炔烃-叠氮化物环加成反应 (CuAAC) 仍然是使用最广泛的转化,尽管广泛的其他催化反应和过渡金属也提供了有效的歧管。在无金属活性模板合成中,最近发现的伯胺与亲电试剂通过冠醚空腔的反应加速,已被证明可以有效地形成一系列没有识别元件的轮烷,包括致密的轮烷超碱、耗散组装的轮烷和分子泵。 本综述详细介绍了活性模板概念,概述了其在合成互锁分子方面的优势和局限性,并绘制了迄今为止与该策略一起使用的各种反应集。讨论了活性模板合成在各个领域的应用,包括分子机械、机械手性、催化、分子识别和材料科学的各个方面。