当前位置:
X-MOL 学术
›
IEEE Internet Things J.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A Comprehensive MDP-Based Approach to Model and Optimize Discontinuous Reception (DRX) in Cellular IoT Networks
IEEE Internet of Things Journal ( IF 8.2 ) Pub Date : 2024-09-05 , DOI: 10.1109/jiot.2024.3452487 Nicholas Accurso 1 , Nicholas Mastronarde 1 , Filippo Malandra 1
IEEE Internet of Things Journal ( IF 8.2 ) Pub Date : 2024-09-05 , DOI: 10.1109/jiot.2024.3452487 Nicholas Accurso 1 , Nicholas Mastronarde 1 , Filippo Malandra 1
Affiliation
Due to the exponential growth of endpoints in the Internet of Things (IoT), new protocols have been proposed to utilize cellular infrastructures, allowing a large amount of IoT devices to communicate through them. These novel protocols make up the Cellular IoT (C-IoT). In C-IoT, the energy efficiency of endpoints is essential in order to reduce both operational cost and required maintenance. One method of energy reduction is discontinuous reception (DRX). DRX allows a device’s radio frequency (RF) circuitry to turn off for brief periods of time. While off, the device experiences a tradeoff between saving energy and an increase in expected latency, which can be tuned by how long the device spends asleep. In this article, we model DRX as a Markov decision process (MDP). This MDP is solved using a low-complexity “DRX-aware” value iteration algorithm, then verified through simulation and analytical analysis. Further, the energy-latency tradeoff is explored by varying the device’s priority on either energy or latency in addition to varying the traffic intensity. Finally, a method of traffic estimation is applied, and the model’s performance in an environment with time-varying traffic intensity is explored. This approach is compared with a reinforcement learning approach, showing that the traffic estimation approach is better suited to the problem of DRX optimization.
中文翻译:
一种基于 MDP 的全面方法,用于建模和优化蜂窝物联网网络中的非连续接收 (DRX)
由于物联网 (IoT) 中端点的指数级增长,已经提出了利用蜂窝基础设施的新协议,允许大量物联网设备通过它们进行通信。这些新颖的协议构成了蜂窝物联网 (C-IoT)。在 C-IoT 中,端点的能源效率对于降低运营成本和所需的维护至关重要。一种减少能量的方法是不连续接收 (DRX)。DRX 允许设备的射频 (RF) 电路短暂关闭。关闭时,设备会在节省能源和增加预期延迟之间进行权衡,这可以通过设备休眠的时间来调整。在本文中,我们将 DRX 建模为马尔可夫决策过程 (MDP)。该 MDP 使用低复杂度的“DRX 感知”值迭代算法进行求解,然后通过仿真和分析进行验证。此外,除了改变流量强度之外,还可以通过改变设备对能量或延迟的优先级来探索能量-延迟的权衡。最后,应用了一种流量估计方法,并探讨了模型在具有时变流量强度的环境中的性能。将这种方法与强化学习方法进行了比较,表明流量估计方法更适合 DRX 优化问题。
更新日期:2024-09-05
中文翻译:
一种基于 MDP 的全面方法,用于建模和优化蜂窝物联网网络中的非连续接收 (DRX)
由于物联网 (IoT) 中端点的指数级增长,已经提出了利用蜂窝基础设施的新协议,允许大量物联网设备通过它们进行通信。这些新颖的协议构成了蜂窝物联网 (C-IoT)。在 C-IoT 中,端点的能源效率对于降低运营成本和所需的维护至关重要。一种减少能量的方法是不连续接收 (DRX)。DRX 允许设备的射频 (RF) 电路短暂关闭。关闭时,设备会在节省能源和增加预期延迟之间进行权衡,这可以通过设备休眠的时间来调整。在本文中,我们将 DRX 建模为马尔可夫决策过程 (MDP)。该 MDP 使用低复杂度的“DRX 感知”值迭代算法进行求解,然后通过仿真和分析进行验证。此外,除了改变流量强度之外,还可以通过改变设备对能量或延迟的优先级来探索能量-延迟的权衡。最后,应用了一种流量估计方法,并探讨了模型在具有时变流量强度的环境中的性能。将这种方法与强化学习方法进行了比较,表明流量估计方法更适合 DRX 优化问题。