Complex & Intelligent Systems ( IF 5.0 ) Pub Date : 2024-09-06 , DOI: 10.1007/s40747-024-01586-x Jawad Ali , Waqas Ali , Haifa Alqahtani , Muhammad I. Syam
The linguistic q-rung orthopair fuzzy (\(L^{q}ROF\)) set serves as a useful way of presenting uncertain information by offering more space for decision experts. In the present research, we first link the concepts of Hamacher t-norm and t-conorm with the frame of \(L^{q}ROF\) numbers to develop and analyze the innovative \(L^{q}ROF\) Hamacher operations. Then, following the proposed Hamacher’s norm operations, a series of aggregation operators including \(L^{q}ROF\) weighted averaging, \(L^{q}ROF\) ordered weighted averaging, \(L^{q}ROF\) hybrid averaging, \(L^{q}ROF\) weighted geometric, \(L^{q}ROF\) ordered weighted geometric, \(L^{q}ROF\) hybrid geometric operators are investigated. Some interesting aspects of these AOs are also presented. We further develop evaluation based on distance from average solution (EDAS) approach in light of the newly outlined concepts to cope with \(L^{q}ROF\) decision-making problems where the weight information of criteria is fully unknown, ultimately, the practicality of the framed approach is demonstrated through an empirical case, and a detailed analysis is carried out to showcase the methodology dominance.
中文翻译:
利用语言 q 梯级正对模糊 Hamacher 聚合算子进行多标准群决策分析的增强 EDAS 方法
语言 q 梯级正交模糊对 ( \(L^{q}ROF\) ) 集通过为决策专家提供更多空间,成为呈现不确定信息的有用方法。在本研究中,我们首先将 Hamacher t-norm 和 t-conorm 的概念与\(L^{q}ROF\)数的框架联系起来,以开发和分析创新的\(L^{q}ROF\)哈马赫行动。然后,遵循提出的 Hamacher 范数运算,一系列聚合算子,包括\(L^{q}ROF\)加权平均、 \(L^{q}ROF\)有序加权平均、 \(L^{q}ROF\ )研究了\)混合平均、 \(L^{q}ROF\)加权几何、 \(L^{q}ROF\)有序加权几何、 \(L^{q}ROF\)混合几何算子。还介绍了这些 AO 的一些有趣的方面。我们根据新提出的概念,进一步开发基于距离平均解(EDAS)方法的评估,以应对标准权重信息完全未知的\(L^{q}ROF\)决策问题,最终,通过实证案例证明了框架方法的实用性,并进行了详细的分析以展示方法论的主导地位。