当前位置:
X-MOL 学术
›
Polym. Chem.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Degradable branched and cross-linked polyesters from a bis(1,3-dioxolan-4-one) core
Polymer Chemistry ( IF 4.1 ) Pub Date : 2024-09-06 , DOI: 10.1039/d4py00551a Orla Buensoz , Christina Picken , Christopher Fidge , Paul Price , Michael Patrick Shaver
Polymer Chemistry ( IF 4.1 ) Pub Date : 2024-09-06 , DOI: 10.1039/d4py00551a Orla Buensoz , Christina Picken , Christopher Fidge , Paul Price , Michael Patrick Shaver
The control of macromolecular architecture is key to tailoring polymers, with cross-linked and branched topologies conferring useful bulk properties. However, conventional methods to produce topologically diverse polymers typically rely on fossil-fuel derived starting materials and non-degradable backbones. This work reports a facile approach to produce both cross-linked and branched polyesters, using a bio-derived bis(1,3-dioxolan-4-one) (bisDOX) core. Through the copolymerisation of bisDOX with readily available diols, we demonstrate the synthesis of cross-linked polyesters with diverse thermal properties and understand their structure–property relationships. Additionally, branched polyesters are synthesised via the introduction of a tri-functional alcohol monomer with branched structures characterised by detailed NMR spectroscopy. Model compound studies reveal the reactivity of bisDOX and identify preferential, but not exclusive, reactivity at primary vs. secondary hydroxyls. Moreover, multiple end-of-life fates are investigated, with both reprocessability and degradability of the cross-linked polyesters explored. This work offers insights into the synthesis of topologically diverse polyesters and highlights information that could inform the future design of more sustainable materials.
中文翻译:
来自双(1,3-二氧戊环-4-一)核的可降解支化和交联聚酯
大分子结构的控制是定制聚合物的关键,交联和支化拓扑赋予有用的本体特性。然而,生产拓扑多样化聚合物的传统方法通常依赖于化石燃料衍生的起始材料和不可降解的主链。这项工作报告了一种使用生物衍生的双(1,3-二氧戊环-4-酮) (bisDOX) 核生产交联和支化聚酯的简便方法。通过 bisDOX 与容易获得的二醇的共聚,我们展示了具有不同热性能的交联聚酯的合成,并了解了它们的结构-性能关系。此外,通过引入具有支化结构的三官能醇单体来合成支化聚酯,其支化结构由详细的核磁共振波谱表征。模型化合物研究揭示了 bisDOX 的反应性,并确定了伯羟基与仲羟基的优先(但不是排他性)反应性。此外,还研究了多种报废情况,并探讨了交联聚酯的可再加工性和可降解性。这项工作提供了对拓扑多样化聚酯合成的见解,并重点介绍了可以为未来设计更可持续材料提供信息的信息。
更新日期:2024-09-06
中文翻译:
来自双(1,3-二氧戊环-4-一)核的可降解支化和交联聚酯
大分子结构的控制是定制聚合物的关键,交联和支化拓扑赋予有用的本体特性。然而,生产拓扑多样化聚合物的传统方法通常依赖于化石燃料衍生的起始材料和不可降解的主链。这项工作报告了一种使用生物衍生的双(1,3-二氧戊环-4-酮) (bisDOX) 核生产交联和支化聚酯的简便方法。通过 bisDOX 与容易获得的二醇的共聚,我们展示了具有不同热性能的交联聚酯的合成,并了解了它们的结构-性能关系。此外,通过引入具有支化结构的三官能醇单体来合成支化聚酯,其支化结构由详细的核磁共振波谱表征。模型化合物研究揭示了 bisDOX 的反应性,并确定了伯羟基与仲羟基的优先(但不是排他性)反应性。此外,还研究了多种报废情况,并探讨了交联聚酯的可再加工性和可降解性。这项工作提供了对拓扑多样化聚酯合成的见解,并重点介绍了可以为未来设计更可持续材料提供信息的信息。