当前位置:
X-MOL 学术
›
Genome Biol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
DeepKINET: a deep generative model for estimating single-cell RNA splicing and degradation rates
Genome Biology ( IF 10.1 ) Pub Date : 2024-09-06 , DOI: 10.1186/s13059-024-03367-8 Chikara Mizukoshi 1, 2 , Yasuhiro Kojima 3, 4 , Satoshi Nomura 1 , Shuto Hayashi 4 , Ko Abe 4 , Teppei Shimamura 1, 4
Genome Biology ( IF 10.1 ) Pub Date : 2024-09-06 , DOI: 10.1186/s13059-024-03367-8 Chikara Mizukoshi 1, 2 , Yasuhiro Kojima 3, 4 , Satoshi Nomura 1 , Shuto Hayashi 4 , Ko Abe 4 , Teppei Shimamura 1, 4
Affiliation
Messenger RNA splicing and degradation are critical for gene expression regulation, the abnormality of which leads to diseases. Previous methods for estimating kinetic rates have limitations, assuming uniform rates across cells. DeepKINET is a deep generative model that estimates splicing and degradation rates at single-cell resolution from scRNA-seq data. DeepKINET outperforms existing methods on simulated and metabolic labeling datasets. Applied to forebrain and breast cancer data, it identifies RNA-binding proteins responsible for kinetic rate diversity. DeepKINET also analyzes the effects of splicing factor mutations on target genes in erythroid lineage cells. DeepKINET effectively reveals cellular heterogeneity in post-transcriptional regulation.
中文翻译:
DeepKINET:用于估计单细胞 RNA 剪接和降解率的深度生成模型
信使RNA剪接和降解对于基因表达调控至关重要,其异常会导致疾病。先前估计动力学速率的方法存在局限性,假设细胞之间的速率一致。 DeepKINET 是一种深度生成模型,可根据 scRNA-seq 数据以单细胞分辨率估计剪接和降解率。 DeepKINET 在模拟和代谢标记数据集上的性能优于现有方法。应用于前脑和乳腺癌数据,它可以识别负责动力学速率多样性的 RNA 结合蛋白。 DeepKINET 还分析了剪接因子突变对红系细胞中靶基因的影响。 DeepKINET 有效揭示了转录后调控中的细胞异质性。
更新日期:2024-09-06
中文翻译:
DeepKINET:用于估计单细胞 RNA 剪接和降解率的深度生成模型
信使RNA剪接和降解对于基因表达调控至关重要,其异常会导致疾病。先前估计动力学速率的方法存在局限性,假设细胞之间的速率一致。 DeepKINET 是一种深度生成模型,可根据 scRNA-seq 数据以单细胞分辨率估计剪接和降解率。 DeepKINET 在模拟和代谢标记数据集上的性能优于现有方法。应用于前脑和乳腺癌数据,它可以识别负责动力学速率多样性的 RNA 结合蛋白。 DeepKINET 还分析了剪接因子突变对红系细胞中靶基因的影响。 DeepKINET 有效揭示了转录后调控中的细胞异质性。