当前位置: X-MOL 学术Phys. Rev. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Interfacial Thermal Fluctuations Stabilize Bulk Nanobubbles
Physical Review Letters ( IF 8.1 ) Pub Date : 2024-09-06 , DOI: 10.1103/physrevlett.133.104001
Yuyu Chen 1 , Yue Hu 1 , Benlong Wang 1, 1 , Xuesen Chu 2, 3 , Lu-Wen Zhang 1, 1
Affiliation  

Consensus on bulk nanobubble stability remains elusive, despite accepted indirect evidence for longevity. We develop a nanobubble evolution model by incorporating thermal capillary wave theory that reveals that dense nanobubbles generated by acoustic cavitation tend to shrink and intensify interfacial thermal fluctuations; this significantly reduces surface tension to neutralize enhanced Laplace pressure, and secures their stabilization at a finite size. A stability criterion emerges: thermal fluctuation intensity scales superlinearly with curvature: h2(1/R)n, n>1. The model prolongs the time frame for nanobubble contraction to 2 orders of magnitude beyond classical theory estimates, and captures the equilibrium radius (90–215 nm) within the experimental range.

中文翻译:


界面热波动稳定块状纳米气泡



尽管有公认的长寿的间接证据,但关于块状纳米气泡稳定性的共识仍然难以捉摸。我们通过结合热毛细波理论开发了纳米气泡演化模型,该模型揭示了声空化产生的致密纳米气泡往往会收缩并加剧界面热波动;这显着降低了表面张力,以中和增强的拉普拉斯压力,并确保其在有限尺寸下的稳定性。出现了一个稳定性标准:热涨落强度与曲率呈超线性比例关系: h2(1/R)n , n>1 。该模型将纳米气泡收缩的时间范围延长至超出经典理论估计的 2 个数量级,并在实验范围内捕获了平衡半径(90-215 nm)。
更新日期:2024-09-06
down
wechat
bug