Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Discovery of Isomerization Intermediates in CdS Magic-Size Clusters
ACS Nano ( IF 15.8 ) Pub Date : 2024-09-05 , DOI: 10.1021/acsnano.4c08319 Reilly P Lynch 1 , Thomas J Ugras 2 , Richard D Robinson 1, 3
ACS Nano ( IF 15.8 ) Pub Date : 2024-09-05 , DOI: 10.1021/acsnano.4c08319 Reilly P Lynch 1 , Thomas J Ugras 2 , Richard D Robinson 1, 3
Affiliation
Isomerization, the process by which a molecule is coherently transformed into another molecule with the same molecular formula but a different atomic structure, is an important and well-known phenomenon of organic chemistry, but has only recently been observed for inorganic nanoclusters. Previously, CdS nanoclusters were found to isomerize between two end point structures rapidly and reversibly (the α-phase and β-phase), mediated by hydroxyl groups on the surface. This observation raised many significant structural and pathway questions. One critical question is why no intermediate states were observed during the isomerization; it is not obvious why an atomic cluster should only have two stable end points rather than multiple intermediate arrangements. In this study, we report that the use of amide functional groups can stabilize intermediate phases during the transformation of CdS magic-size clusters between the α-phase and the β-phase. When treated with amides in organic solvents, the amides not only facilitate the α-phase to β-phase isomerization but also exhibit three distinct excitonic features, which we call the β340-phase, β350-phase, and β367-phase. Based on pair distribution function analysis, these intermediates strongly resemble the β-phase structure but deviate greatly from the α-phase structure. All phases (β340-phase, β350-phase, and β367-phase) have nearly identical structures to the β-phase, with the β340-phase having the largest deviation. Despite these intermediates having similar atomic structures, they have up to a 583 meV difference in band gap compared to the β-phase. Kinetic studies show that the isomers and intermediates follow a traditional progression in the thermodynamic stability of β340-phase/β350-phase < α-phase < β367-phase < β-phase. The solvent identity and polarity play a crucial role in kinetically arresting these intermediates. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy studies paired with simple density functional theory calculations reveal that the likely mechanism is due to the multifunctional nature of the amides that form an amphoteric surface binding bond motif, which promotes a change in the carboxylic acid binding mode. This change from chelating binding modes to bridging binding modes initiates the isomerization. We propose that the carbonyl group is responsible for the direct interaction with the surface, acting as an L-type ligand which then pulls electron density away from the electron-poor nitrogen site, enabling them to interact with the carboxylate ligands and initiate the change in the binding mode. The isomerization of CdS nanoclusters continues to be a topic of interest, giving insight into fundamental nanoscale chemistry and physics.
中文翻译:
在 CdS Magic 大小的簇中发现异构化中间体
异构化,即一个分子相干地转化为具有相同分子式但具有不同原子结构的另一个分子的过程,是有机化学中一个重要且众所周知的现象,但直到最近才观察到无机纳米团簇。以前,发现 CdS 纳米团簇在表面羟基介导的两个终点结构(α相和β相)之间快速且可逆地异构化。这一观察引发了许多重要的结构和途径问题。一个关键问题是为什么在异构化过程中没有观察到中间态;为什么原子簇应该只有两个稳定的端点而不是多个中间排列并不明显。在这项研究中,我们报道了酰胺官能团的使用可以在 α 相和 β 相之间 CdS 神奇大小的团簇的转化过程中稳定中间相。当在有机溶剂中用酰胺处理时,酰胺不仅促进 α 相到 β 相异构化,而且还表现出三种不同的激子特征,我们称之为β 340 相、β350 相和 β367 相。基于对分布函数分析,这些中间体与 β 相结构非常相似,但与 α 相结构有很大差异。所有相(β340 相、β350 相和 β367 相)都具有与 β 相几乎相同的结构,其中β 340 相的偏差最大。尽管这些中间体具有相似的原子结构,但与 β 相相比,它们的带隙差异高达 583 meV。 动力学研究表明,异构体和中间体遵循β 340 相/β350 相 < α 33C β367 相 < β相的热力学稳定性的传统进展。溶剂身份和极性在动力学阻滞这些中间体中起着至关重要的作用。傅里叶变换红外光谱和 X 射线光电子能谱研究与简单的密度泛函理论计算相结合,表明可能的机制是由于形成两性表面结合键基序的酰胺的多功能性质,这促进了羧酸结合模式的变化。这种从螯合结合模式到桥接结合模式的变化启动了异构化。我们提出羰基负责与表面的直接相互作用,充当 L 型配体,然后将电子密度从缺电子氮位点拉走,使它们能够与羧酸盐配体相互作用并引发结合模式的变化。CdS 纳米团簇的异构化仍然是一个令人感兴趣的话题,它让我们深入了解了基本的纳米级化学和物理学。
更新日期:2024-09-05
中文翻译:
在 CdS Magic 大小的簇中发现异构化中间体
异构化,即一个分子相干地转化为具有相同分子式但具有不同原子结构的另一个分子的过程,是有机化学中一个重要且众所周知的现象,但直到最近才观察到无机纳米团簇。以前,发现 CdS 纳米团簇在表面羟基介导的两个终点结构(α相和β相)之间快速且可逆地异构化。这一观察引发了许多重要的结构和途径问题。一个关键问题是为什么在异构化过程中没有观察到中间态;为什么原子簇应该只有两个稳定的端点而不是多个中间排列并不明显。在这项研究中,我们报道了酰胺官能团的使用可以在 α 相和 β 相之间 CdS 神奇大小的团簇的转化过程中稳定中间相。当在有机溶剂中用酰胺处理时,酰胺不仅促进 α 相到 β 相异构化,而且还表现出三种不同的激子特征,我们称之为β 340 相、β350 相和 β367 相。基于对分布函数分析,这些中间体与 β 相结构非常相似,但与 α 相结构有很大差异。所有相(β340 相、β350 相和 β367 相)都具有与 β 相几乎相同的结构,其中β 340 相的偏差最大。尽管这些中间体具有相似的原子结构,但与 β 相相比,它们的带隙差异高达 583 meV。 动力学研究表明,异构体和中间体遵循β 340 相/β350 相 < α 33C β367 相 < β相的热力学稳定性的传统进展。溶剂身份和极性在动力学阻滞这些中间体中起着至关重要的作用。傅里叶变换红外光谱和 X 射线光电子能谱研究与简单的密度泛函理论计算相结合,表明可能的机制是由于形成两性表面结合键基序的酰胺的多功能性质,这促进了羧酸结合模式的变化。这种从螯合结合模式到桥接结合模式的变化启动了异构化。我们提出羰基负责与表面的直接相互作用,充当 L 型配体,然后将电子密度从缺电子氮位点拉走,使它们能够与羧酸盐配体相互作用并引发结合模式的变化。CdS 纳米团簇的异构化仍然是一个令人感兴趣的话题,它让我们深入了解了基本的纳米级化学和物理学。