当前位置:
X-MOL 学术
›
Glob. Change Biol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Methane fluxes in tidal marshes of the conterminous United States
Global Change Biology ( IF 10.8 ) Pub Date : 2024-09-05 , DOI: 10.1111/gcb.17462 Ariane Arias-Ortiz 1, 2 , Jaxine Wolfe 3 , Scott D Bridgham 4 , Sara Knox 5, 6 , Gavin McNicol 7 , Brian A Needelman 8 , Julie Shahan 9 , Ellen J Stuart-Haëntjens 10 , Lisamarie Windham-Myers 10 , Patty Y Oikawa 11 , Dennis D Baldocchi 2 , Joshua S Caplan 12 , Margaret Capooci 13 , Kenneth M Czapla 14 , R Kyle Derby 15 , Heida L Diefenderfer 16 , Inke Forbrich 17, 18 , Gina Groseclose 19 , Jason K Keller 20, 21 , Cheryl Kelley 22 , Amr E Keshta 8, 23 , Helena S Kleiner 3 , Ken W Krauss 24 , Robert R Lane 25 , Sarah Mack 26 , Serena Moseman-Valtierra 27 , Thomas J Mozdzer 28 , Peter Mueller 29 , Scott C Neubauer 30 , Genevieve Noyce 3 , Karina V R Schäfer 31 , Rebecca Sanders-DeMott 32 , Charles A Schutte 33 , Rodrigo Vargas 13 , Nathaniel B Weston 34 , Benjamin Wilson 35 , J Patrick Megonigal 3 , James R Holmquist 3
Global Change Biology ( IF 10.8 ) Pub Date : 2024-09-05 , DOI: 10.1111/gcb.17462 Ariane Arias-Ortiz 1, 2 , Jaxine Wolfe 3 , Scott D Bridgham 4 , Sara Knox 5, 6 , Gavin McNicol 7 , Brian A Needelman 8 , Julie Shahan 9 , Ellen J Stuart-Haëntjens 10 , Lisamarie Windham-Myers 10 , Patty Y Oikawa 11 , Dennis D Baldocchi 2 , Joshua S Caplan 12 , Margaret Capooci 13 , Kenneth M Czapla 14 , R Kyle Derby 15 , Heida L Diefenderfer 16 , Inke Forbrich 17, 18 , Gina Groseclose 19 , Jason K Keller 20, 21 , Cheryl Kelley 22 , Amr E Keshta 8, 23 , Helena S Kleiner 3 , Ken W Krauss 24 , Robert R Lane 25 , Sarah Mack 26 , Serena Moseman-Valtierra 27 , Thomas J Mozdzer 28 , Peter Mueller 29 , Scott C Neubauer 30 , Genevieve Noyce 3 , Karina V R Schäfer 31 , Rebecca Sanders-DeMott 32 , Charles A Schutte 33 , Rodrigo Vargas 13 , Nathaniel B Weston 34 , Benjamin Wilson 35 , J Patrick Megonigal 3 , James R Holmquist 3
Affiliation
Methane (CH4 ) is a potent greenhouse gas (GHG) with atmospheric concentrations that have nearly tripled since pre‐industrial times. Wetlands account for a large share of global CH4 emissions, yet the magnitude and factors controlling CH4 fluxes in tidal wetlands remain uncertain. We synthesized CH4 flux data from 100 chamber and 9 eddy covariance (EC) sites across tidal marshes in the conterminous United States to assess controlling factors and improve predictions of CH4 emissions. This effort included creating an open‐source database of chamber‐based GHG fluxes (https://doi.org/10.25573/serc.14227085 ). Annual fluxes across chamber and EC sites averaged 26 ± 53 g CH4 m−2 year−1 , with a median of 3.9 g CH4 m−2 year−1 , and only 25% of sites exceeding 18 g CH4 m−2 year−1 . The highest fluxes were observed at fresh‐oligohaline sites with daily maximum temperature normals (MATmax) above 25.6°C. These were followed by frequently inundated low and mid‐fresh‐oligohaline marshes with MATmax ≤25.6°C, and mesohaline sites with MATmax >19°C. Quantile regressions of paired chamber CH4 flux and porewater biogeochemistry revealed that the 90th percentile of fluxes fell below 5 ± 3 nmol m−2 s−1 at sulfate concentrations >4.7 ± 0.6 mM, porewater salinity >21 ± 2 psu, or surface water salinity >15 ± 3 psu. Across sites, salinity was the dominant predictor of annual CH4 fluxes, while within sites, temperature, gross primary productivity (GPP), and tidal height controlled variability at diel and seasonal scales. At the diel scale, GPP preceded temperature in importance for predicting CH4 flux changes, while the opposite was observed at the seasonal scale. Water levels influenced the timing and pathway of diel CH4 fluxes, with pulsed releases of stored CH4 at low to rising tide. This study provides data and methods to improve tidal marsh CH4 emission estimates, support blue carbon assessments, and refine national and global GHG inventories.
中文翻译:
美国本土潮汐沼泽中的甲烷通量
甲烷 (CH4) 是一种强效温室气体 (GHG),其大气浓度自工业化前时期以来几乎增加了两倍。湿地占全球甲烷排放量的很大一部分,但潮汐湿地甲烷通量的大小和控制因素仍不确定。我们综合了美国本土潮汐沼泽中 100 个室和 9 个涡流协方差 (EC) 站点的 CH4 通量数据,以评估控制因素并改进对 CH4 排放的预测。这项工作包括创建一个基于室的温室气体通量的开源数据库 (https://doi.org/10.25573/serc.14227085)。穿过暗室和 EC 站点的年通量平均为 26 ± 53 g CH4 m−2year−1,中位数为 3.9 g CH4 m−2year−1,只有 25% 的站点超过 18g CH4 m−2year−1 。在每日最高正常温度 (MATmax) 高于 25.6°C 的新鲜寡盐地点观察到最高通量。其次是经常被淹没的低盐和中盐沼泽,MATmax ≤25.6°C,以及中盐沼泽,MATmax >19°C。配对室 CH4 通量和孔隙水生物地球化学的分位数回归表明,在硫酸盐浓度 >4.7 ± 0.6 mM、孔隙水盐度 >21 ± 2 psu 或地表条件下,通量的第 90 个百分位数降至 5 ± 3 nmol m−2 s−1 以下水盐度 >15 ± 3 psu。在不同地点,盐度是年度 CH4 通量的主要预测因素,而在地点内,温度、总初级生产力 (GPP) 和潮汐高度控制着昼夜和季节尺度的变化。在昼夜尺度上,GPP 在预测 CH4 通量变化方面的重要性高于温度,而在季节尺度上则相反。水位影响了昼间 CH4 通量的时间和路径,在退潮到涨潮时储存的 CH4 呈脉冲式释放。 这项研究提供了数据和方法来改进潮汐沼泽甲烷排放估算、支持蓝碳评估以及完善国家和全球温室气体清单。
更新日期:2024-09-05
中文翻译:
美国本土潮汐沼泽中的甲烷通量
甲烷 (CH4) 是一种强效温室气体 (GHG),其大气浓度自工业化前时期以来几乎增加了两倍。湿地占全球甲烷排放量的很大一部分,但潮汐湿地甲烷通量的大小和控制因素仍不确定。我们综合了美国本土潮汐沼泽中 100 个室和 9 个涡流协方差 (EC) 站点的 CH4 通量数据,以评估控制因素并改进对 CH4 排放的预测。这项工作包括创建一个基于室的温室气体通量的开源数据库 (https://doi.org/10.25573/serc.14227085)。穿过暗室和 EC 站点的年通量平均为 26 ± 53 g CH4 m−2year−1,中位数为 3.9 g CH4 m−2year−1,只有 25% 的站点超过 18g CH4 m−2year−1 。在每日最高正常温度 (MATmax) 高于 25.6°C 的新鲜寡盐地点观察到最高通量。其次是经常被淹没的低盐和中盐沼泽,MATmax ≤25.6°C,以及中盐沼泽,MATmax >19°C。配对室 CH4 通量和孔隙水生物地球化学的分位数回归表明,在硫酸盐浓度 >4.7 ± 0.6 mM、孔隙水盐度 >21 ± 2 psu 或地表条件下,通量的第 90 个百分位数降至 5 ± 3 nmol m−2 s−1 以下水盐度 >15 ± 3 psu。在不同地点,盐度是年度 CH4 通量的主要预测因素,而在地点内,温度、总初级生产力 (GPP) 和潮汐高度控制着昼夜和季节尺度的变化。在昼夜尺度上,GPP 在预测 CH4 通量变化方面的重要性高于温度,而在季节尺度上则相反。水位影响了昼间 CH4 通量的时间和路径,在退潮到涨潮时储存的 CH4 呈脉冲式释放。 这项研究提供了数据和方法来改进潮汐沼泽甲烷排放估算、支持蓝碳评估以及完善国家和全球温室气体清单。