当前位置: X-MOL 学术J. Mater. Chem. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hydrogen-bond chemistry inhibits Jahn–Teller distortion caused by Mn 3d orbitals for long-lifespan aqueous Zn//MnO2 batteries
Journal of Materials Chemistry A ( IF 10.7 ) Pub Date : 2024-09-03 , DOI: 10.1039/d4ta04566a
Ziming Xu 1 , Jiwei Wang 1 , Wenyuan Zhang 1 , Zhichen Shi 1 , Yongbao Feng 1 , Chenglong Liu 2 , Huili Fu 3 , Zhenzhong Yong 3 , Qiulong Li 1
Affiliation  

Manganese dioxide (MnO2) is a promising cathode for aqueous Zn batteries owing to its high theoretical capacity and operating voltage. However, it is still confronted with poor conductivity, structural collapse, sluggish ion kinetics, and Jahn–Teller (J–T) distortion. Herein, we propose hydrogen bond-modulated MnO2 by introducing NH4+ (NHMO) for prominent zinc-ion storage. The formation of a hydrogen bond in MnO2 reduces its layer spacing, presenting a more stable structure. The theoretical calculation results demonstrate that the pre-intercalation of NH4+ can effectively reduce the bandgap of the MnO2, enhancing its conductivity. More importantly, the formation of the hydrogen bond can significantly decrease the variation of Mn–O bond length and the proportion of Mn 3dz2 orbitals, meaning that the hydrogen-bond chemistry can effectively suppress J–T distortion. As expected, a high capacity of 287.9 mA h g−1 at 0.1 A g−1 and an ultrahigh rate performance (99.4 mA h g−1 at 6.0 A g−1) can be achieved for the NHMO, as well as a fantastically outstanding cycling stability of 90.0% after 13 000 cycles, far exceeding previously reported Mn-based materials. The rational introduction of a hydrogen bond provides a novel strategy for the development of ultralong lifespan aqueous Zn batteries.

中文翻译:


氢键化学可抑制 Mn 3d 轨道引起的 Jahn-Teller 畸变,从而实现长寿命水系 Zn//MnO2 电池



二氧化锰(MnO 2 )由于其高理论容量和工作电压而成为水系锌电池的一种有前途的正极。然而,它仍然面临着导电性差、结构塌陷、离子动力学缓慢和 Jahn-Teller (J-T) 畸变等问题。在此,我们提出通过引入NH 4 + (NHMO)来调节氢键的MnO 2以实现显着的锌离子存储。 MnO 2中氢键的形成减小了其层间距,呈现出更稳定的结构。理论计算结果表明,NH 4 +的预插层可以有效减小MnO 2的带隙,提高其电导率。更重要的是,氢键的形成可以显着减少Mn-O键长的变化和Mn 3d z 2轨道的比例,这意味着氢键化学可以有效抑制J-T畸变。正如预期的那样,NHMO可以实现在0.1 A g -1下287.9 mA hg -1的高容量和超高倍率性能(6.0 A g -1下99.4 mA hg -1 ),以及极其出色的循环性能13000次循环后稳定性达到90.0%,远远超过之前报道的锰基材料。 氢键的合理引入为超长寿命水系锌电池的发展提供了新的策略。
更新日期:2024-09-05
down
wechat
bug