当前位置:
X-MOL 学术
›
Energy Environ. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Ultrastable electrolyte (>3500 hours at high current density) achieved by high-entropy solvation toward practical aqueous zinc metal batteries
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-09-04 , DOI: 10.1039/d4ee02896a Bin Xie 1 , Chaohe Zheng 2 , Haoran Lang 1 , Min Li 1 , Qiang Hu 3 , Xin Tan 2 , Qiaoji Zheng 1 , Yu Huo 1 , Jingxin Zhao 4, 5 , Jia-Lin Yang 6 , Zhen-Yi Gu 6 , Dunmin Lin 1 , Xing-Long Wu 6
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-09-04 , DOI: 10.1039/d4ee02896a Bin Xie 1 , Chaohe Zheng 2 , Haoran Lang 1 , Min Li 1 , Qiang Hu 3 , Xin Tan 2 , Qiaoji Zheng 1 , Yu Huo 1 , Jingxin Zhao 4, 5 , Jia-Lin Yang 6 , Zhen-Yi Gu 6 , Dunmin Lin 1 , Xing-Long Wu 6
Affiliation
New electrolytes for aqueous zinc metal batteries have been widely studied, but the performance and dendrite inhibition effect of single-solvent electrolytes are limited, which is far from meeting the requirements of cycle stability and ionic conductivity of electrolyte. Here, we report a high-entropy solvation electrolyte (HESE) strategy to enhance the cycle life of ZMBs by increasing solvated structure diversity in electrolytes. The HESE enhances the configurational entropy of Zn2+ solvated structure, which reduces electrostatic interactions between ions in the solution, thus promoting rapid ion transport kinetics (tZn2+ = 0.65). Moreover, the high level of disorder in HESE induces the formation of ion clusters with low free energy and weakens the interaction between Zn2+ and H2O, thereby regulating the O–H bond order to inhibit side reactions and achieve uniform deposition of Zn2+. As a proof of concept, the Zn||Zn symmetric cell employing the HESE achieves a stable cycle of 3500 h at a high current density of 5 mA cm−2 and an ultrahigh cumulative plating capacity of 8.75 A h cm−2. Additionally, the suppression of side reactions and dendrite formation in HESE significantly enhances the cycling performance of Zn||NH4V4O10 cells. This work presents a practical approach to enhance the ionic conductivity and suppress dendrite growth by the high-entropy solvation chemistry.
中文翻译:
通过高熵溶剂化实现实用水性锌金属电池的超稳定电解质(高电流密度下%3E3500小时)
用于水性锌金属电池的新型电解液已被广泛研究,但单溶剂电解液的性能和枝晶抑制效果有限,远远不能满足电解液循环稳定性和离子电导率的要求。在这里,我们报告了一种高熵溶剂化电解质(HESE)策略,通过增加电解质中溶剂化结构的多样性来提高 ZMB 的循环寿命。 HESE增强了Zn 2+溶剂化结构的构型熵,从而减少了溶液中离子之间的静电相互作用,从而促进了快速离子传输动力学( t Zn 2+ = 0.65)。此外,HESE的高度无序性会导致低自由能离子簇的形成,削弱Zn 2+和H 2 O之间的相互作用,从而调节O-H键顺序,抑制副反应,实现Zn的均匀沉积。 2+ 。作为概念验证,采用 HESE 的 Zn||Zn 对称电池在 5 mA cm -2的高电流密度下实现了 3500 h 的稳定循环和 8.75 A h cm -2的超高累积电镀容量。此外,HESE中副反应和枝晶形成的抑制显着增强了Zn||NH 4 V 4 O 10电池的循环性能。 这项工作提出了一种通过高熵溶剂化化学来增强离子电导率并抑制枝晶生长的实用方法。
更新日期:2024-09-04
中文翻译:
通过高熵溶剂化实现实用水性锌金属电池的超稳定电解质(高电流密度下%3E3500小时)
用于水性锌金属电池的新型电解液已被广泛研究,但单溶剂电解液的性能和枝晶抑制效果有限,远远不能满足电解液循环稳定性和离子电导率的要求。在这里,我们报告了一种高熵溶剂化电解质(HESE)策略,通过增加电解质中溶剂化结构的多样性来提高 ZMB 的循环寿命。 HESE增强了Zn 2+溶剂化结构的构型熵,从而减少了溶液中离子之间的静电相互作用,从而促进了快速离子传输动力学( t Zn 2+ = 0.65)。此外,HESE的高度无序性会导致低自由能离子簇的形成,削弱Zn 2+和H 2 O之间的相互作用,从而调节O-H键顺序,抑制副反应,实现Zn的均匀沉积。 2+ 。作为概念验证,采用 HESE 的 Zn||Zn 对称电池在 5 mA cm -2的高电流密度下实现了 3500 h 的稳定循环和 8.75 A h cm -2的超高累积电镀容量。此外,HESE中副反应和枝晶形成的抑制显着增强了Zn||NH 4 V 4 O 10电池的循环性能。 这项工作提出了一种通过高熵溶剂化化学来增强离子电导率并抑制枝晶生长的实用方法。