当前位置:
X-MOL 学术
›
J. Materiomics
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Nacre-mimetic alternating architecture of Ag[sbnd]SnO2 contact: Highly-efficient synergistic enhancement of in-situ self-repairing erosion resistance and naturally evolving impact resistance
Journal of Materiomics ( IF 8.4 ) Pub Date : 2024-07-20 , DOI: 10.1016/j.jmat.2024.06.009 Changhu Xu , Kai Wen , Zhe Wang , Jun Wang , Hailin Lu , Zesen Mao , Tianci Mao , Chongqing Fan , Jun Li
Journal of Materiomics ( IF 8.4 ) Pub Date : 2024-07-20 , DOI: 10.1016/j.jmat.2024.06.009 Changhu Xu , Kai Wen , Zhe Wang , Jun Wang , Hailin Lu , Zesen Mao , Tianci Mao , Chongqing Fan , Jun Li
Synergistically enhancing the erosion and impact resistance of contacts poses a significant challenge for cutting-edge electrical equipment. Fortunately, mollusk shells in nature have evolved effective strategies to construct microstructures with superior erosion and impact resistance. Inspired by the structure of nacre, Ag SnO2 contact material with hierarchical architectures has been designed and fabricated. The mechanistic link between microstructural evolution and dynamic erosion is studied through experiments combined with Computational Fluid Dynamics (CFD) and Finite Element Method (FEM) simulations. Results show that the reconstructed SnO2 skeleton endowed with a highly continuous and anisotropic ‘flowering'-like structure forms a continuous interpenetrating network with Ag, optimizing the conductive pathways on the molten pool surface. Additionally, the Ag-rich regions in the deeper layers on both sides of the molten pool offers a stable ‘nutrient-supply’ for the continuous ‘flowering’ reconstruction of the skeleton, exhibiting excellent in-situ self-repairing erosion resistance. Benefiting from this synergistic strategy, this skeleton is reconstructed based on its natural structure, which further disperses the stress and deformation concentration while inhibiting interfacial debonding, thereby reducing the formation of cracks and significantly enhancing the impact resistance. This work is expected to breakthrough erosion and impact resistance in extreme condition electrical contact materials through biomimetic microstructure design.
中文翻译:
Ag[sbnd]SnO2 接触的模拟晶核交替结构:原位自修复抗侵蚀性和自然演变的抗冲击性的高效协同增强
协同增强触点的抗侵蚀性和抗冲击性对尖端电气设备构成了重大挑战。幸运的是,自然界中的软体动物贝壳已经进化出有效的策略来构建具有卓越抗侵蚀性和抗冲击性的微观结构。受珍珠层结构的启发,设计并制造了具有分层结构的 AgSnO2 接触材料。通过实验结合计算流体动力学 (CFD) 和有限元法 (FEM) 仿真,研究了微观结构演变与动态侵蚀之间的机理联系。结果表明,重建的 SnO2 骨架具有高度连续和各向异性的“开花”状结构,与 Ag 形成连续的互穿网络,优化了熔池表面的导电途径。此外,熔池两侧深层中富含 Ag 的区域为骨架的持续“开花”重建提供了稳定的“营养供应”,表现出优异的原位自我修复抗侵蚀性。得益于这种协同策略,该骨架在其自然结构的基础上进行了重建,在抑制界面脱粘的同时进一步分散了应力和变形集中,从而减少了裂纹的形成并显着增强了抗冲击性。这项工作有望通过仿生微观结构设计突破极端条件下电接触材料的侵蚀和抗冲击性。
更新日期:2024-07-20
中文翻译:
Ag[sbnd]SnO2 接触的模拟晶核交替结构:原位自修复抗侵蚀性和自然演变的抗冲击性的高效协同增强
协同增强触点的抗侵蚀性和抗冲击性对尖端电气设备构成了重大挑战。幸运的是,自然界中的软体动物贝壳已经进化出有效的策略来构建具有卓越抗侵蚀性和抗冲击性的微观结构。受珍珠层结构的启发,设计并制造了具有分层结构的 AgSnO2 接触材料。通过实验结合计算流体动力学 (CFD) 和有限元法 (FEM) 仿真,研究了微观结构演变与动态侵蚀之间的机理联系。结果表明,重建的 SnO2 骨架具有高度连续和各向异性的“开花”状结构,与 Ag 形成连续的互穿网络,优化了熔池表面的导电途径。此外,熔池两侧深层中富含 Ag 的区域为骨架的持续“开花”重建提供了稳定的“营养供应”,表现出优异的原位自我修复抗侵蚀性。得益于这种协同策略,该骨架在其自然结构的基础上进行了重建,在抑制界面脱粘的同时进一步分散了应力和变形集中,从而减少了裂纹的形成并显着增强了抗冲击性。这项工作有望通过仿生微观结构设计突破极端条件下电接触材料的侵蚀和抗冲击性。