当前位置:
X-MOL 学术
›
Phys. Rev. Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Orientational Disorder Drives Site Disorder in Plastic Ammonia Hemihydrate
Physical Review Letters ( IF 8.1 ) Pub Date : 2024-09-04 , DOI: 10.1103/physrevlett.133.106102 Niccolò Avallone 1, 2 , Simon Huppert 1, 2 , Philippe Depondt 1, 2 , Leon Andriambariarijaona 3 , Frédéric Datchi 3 , Sandra Ninet 3 , Thomas Plé 4 , Riccardo Spezia 4 , Fabio Finocchi 1, 2
Physical Review Letters ( IF 8.1 ) Pub Date : 2024-09-04 , DOI: 10.1103/physrevlett.133.106102 Niccolò Avallone 1, 2 , Simon Huppert 1, 2 , Philippe Depondt 1, 2 , Leon Andriambariarijaona 3 , Frédéric Datchi 3 , Sandra Ninet 3 , Thomas Plé 4 , Riccardo Spezia 4 , Fabio Finocchi 1, 2
Affiliation
In the 2–10 GPa pressure range, ammonia hemihydrate (AHH) is a molecular solid in which intermolecular interactions are ruled by distinct types of hydrogen bonds. Upon heating, the low-temperature ordered crystal (AHH-II) transits to a bcc phase (AHH-) where each site is randomly occupied by water or ammonia. In addition to the site disorder, experiments suggest that AHH- is a plastic solid, but the physical origin and mechanisms at play for the rotational and site disordering remain unknown. Using large-scale () and long-time () simulations, we show that, as temperature rises above the transition line, orientational disorder sets in, breaking the strongest hydrogen bonds that provide the largest contribution to the cohesion of the ordered AHH-II phase and enabling the molecules to migrate from a crystal site to a neighboring one. This generates a plastic molecular alloy with site disorder while the solid state is overall maintained until melting at a higher temperature. The case of high plastic ammonia hemihydrate can be extended to other water-ammonia alloys where a similar interplay between distinct hydrogen bonds occurs.
中文翻译:
半水塑氨中的定向紊乱导致位点紊乱
在 2–10 GPa 压力范围内,半水氨 (AHH) 是一种分子固体,其中分子间相互作用由不同类型的氢键决定。加热后,低温有序 晶体 (AHH-II) 转变为 bcc 相 (AHH- )其中每个位点随机被水或氨占据。除了位点紊乱之外,实验表明 AHH- 是一种塑性固体,但旋转和位点无序的物理起源和机制仍然未知。使用大规模( )和长期( )模拟中,我们表明,当温度升至转变线以上时,取向无序开始出现,破坏最强的氢键,这些氢键对有序 AHH-II 相的内聚力贡献最大,并使分子能够从晶体位点迁移到邻近的一个。这会生成具有位点无序的塑料分子合金,同时整体保持固态,直到在更高温度下熔化。高的情况 塑料氨半水合物可以扩展到其他水氨合金,其中不同氢键之间发生类似的相互作用。
更新日期:2024-09-05
中文翻译:
半水塑氨中的定向紊乱导致位点紊乱
在 2–10 GPa 压力范围内,半水氨 (AHH) 是一种分子固体,其中分子间相互作用由不同类型的氢键决定。加热后,低温有序 晶体 (AHH-II) 转变为 bcc 相 (AHH- )其中每个位点随机被水或氨占据。除了位点紊乱之外,实验表明 AHH- 是一种塑性固体,但旋转和位点无序的物理起源和机制仍然未知。使用大规模( )和长期( )模拟中,我们表明,当温度升至转变线以上时,取向无序开始出现,破坏最强的氢键,这些氢键对有序 AHH-II 相的内聚力贡献最大,并使分子能够从晶体位点迁移到邻近的一个。这会生成具有位点无序的塑料分子合金,同时整体保持固态,直到在更高温度下熔化。高的情况 塑料氨半水合物可以扩展到其他水氨合金,其中不同氢键之间发生类似的相互作用。