Light: Science & Applications ( IF 20.6 ) Pub Date : 2024-09-05 , DOI: 10.1038/s41377-024-01559-2 Sirazul Haque 1, 2, 3 , Miguel Alexandre 1 , António T Vicente 1 , Kezheng Li 4 , Christian S Schuster 4 , Sui Yang 3 , Hugo Águas 1 , Rodrigo Martins 1 , Rute A S Ferreira 2 , Manuel J Mendes 1
Advanced light management techniques can enhance the sunlight absorption of perovskite solar cells (PSCs). When located at the front, they may act as a UV barrier, which is paramount for protecting the perovskite layer against UV-enabled degradation. Although it was recently shown that photonic structures such as Escher-like patterns could approach the theoretical Lambertian-limit of light trapping, it remains challenging to also implement UV protection properties for these diffractive structures while maintaining broadband absorption gains. Here, we propose a checkerboard (CB) tile pattern with designated UV photon conversion capability. Through a combined optical and electrical modeling approach, this photonic structure can increase photocurrent and power conversion efficiency in ultrathin PSCs by 25.9% and 28.2%, respectively. We further introduce a luminescent down-shifting encapsulant that converts the UV irradiation into Visible photons matching the solar cell absorption spectrum. To this end, experimentally obtained absorption and emission profiles of state-of-the-art down-shifting materials (i.e., lanthanide-based organic-inorganic hybrids) are used to predict potential gains from harnessing the UV energy. We demonstrate that at least 94% of the impinging UV radiation can be effectively converted into the Visible spectral range. Photonic protection from high-energy photons contributes to the market deployment of perovskite solar cell technology, and may become crucial for Space applications under AM0 illumination. By combining light trapping with luminescent downshifting layers, this work unravels a potential photonic solution to overcome UV degradation in PSCs while circumventing optical losses in ultrathin cells, thus improving both performance and stability.
中文翻译:
钙钛矿太阳能电池中的光子移位和捕获可提高效率和稳定性
先进的光管理技术可以增强钙钛矿太阳能电池(PSC)的阳光吸收。当位于前面时,它们可以充当紫外线屏障,这对于保护钙钛矿层免受紫外线降解至关重要。尽管最近表明,类埃舍尔图案等光子结构可以接近光捕获的理论朗伯极限,但在保持宽带吸收增益的同时为这些衍射结构实现紫外线防护性能仍然具有挑战性。在这里,我们提出了一种具有指定紫外光子转换能力的棋盘(CB)瓷砖图案。通过结合光学和电学建模方法,这种光子结构可以将超薄 PSC 的光电流和功率转换效率分别提高 25.9% 和 28.2%。我们进一步引入了一种发光下移封装剂,可将紫外线辐射转换为与太阳能电池吸收光谱相匹配的可见光子。为此,通过实验获得的最先进的降频材料(即基于镧系元素的有机-无机杂化物)的吸收和发射曲线可用于预测利用紫外线能量的潜在收益。我们证明,至少 94% 的照射紫外线辐射可以有效地转换为可见光谱范围。高能光子的光子防护有助于钙钛矿太阳能电池技术的市场部署,并且可能对 AM0 照明下的空间应用至关重要。通过将光捕获与发光降频层相结合,这项工作揭示了一种潜在的光子解决方案,可以克服 PSC 中的紫外线退化,同时避免超薄电池中的光学损耗,从而提高性能和稳定性。