当前位置:
X-MOL 学术
›
IEEE Trans. Signal Process.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Revisiting High-Order Tensor Singular Value Decomposition From Basic Element Perspective
IEEE Transactions on Signal Processing ( IF 4.6 ) Pub Date : 2024-09-04 , DOI: 10.1109/tsp.2024.3454115 Sheng Liu 1 , Xi-Le Zhao 1 , Jinsong Leng 1 , Ben-Zheng Li 1 , Jing-Hua Yang 2 , Xinyu Chen 3
IEEE Transactions on Signal Processing ( IF 4.6 ) Pub Date : 2024-09-04 , DOI: 10.1109/tsp.2024.3454115 Sheng Liu 1 , Xi-Le Zhao 1 , Jinsong Leng 1 , Ben-Zheng Li 1 , Jing-Hua Yang 2 , Xinyu Chen 3
Affiliation
Recently, tensor singular value decomposition (t-SVD), based on the tensor-tensor product (t-product), has become a powerful tool for processing third-order tensor data. However, constrained by the fact that the basic element is the fiber (i.e., vector) in the t-product, higher-order tensor data (i.e., order $d>3$
) are usually unfolded into third-order tensors to satisfy the classical t-product setting, which leads to the destroying of high-dimensional structure. By revisiting the basic element in the t-product, we suggest a generalized t-product called element-based tensor-tensor product (elt-product) as an alternative of the classic t-product, where the basic element is a $(d-2)$
th-order tensor instead of a vector. The benefit of the elt-product is that it can better preserve high-dimensional structures and that it can explore more complex interactions via higher-order convolution instead of first-order convolution in classic t-product. Starting from the elt-product, we develop new tensor-SVD and low-rank tensor metrics (e.g., rank and nuclear norm). Equipped with the suggested metrics, we present a tensor completion model for high-order tensor data and prove the exact recovery guarantees. To harness the resulting nonconvex optimization problem, we apply an alternating direction method of the multiplier (ADMM) algorithm with a theoretical convergence guarantee. Extensive experimental results on the simulated and real-world data (color videos, light-field images, light-field videos, and traffic data) demonstrate the superiority of the proposed model against the state-of-the-art baseline models.
中文翻译:
从基本元角度重新审视高阶张量奇异值分解
最近,基于张量-张量积 (t-product) 的张量奇异值分解 (t-SVD) 已成为处理三阶张量数据的强大工具。然而,受制于基本元素是 t 积中的纤维(即向量)这一事实,高阶张量数据(即 $d>3$ 阶)通常被展开为三阶张量以满足经典的 t 积设置,从而导致高维结构的破坏。通过重新审视 t 积中的基本元素,我们提出了一种称为基于元素的张量-张量积 (elt-product) 的广义 t 积,作为经典 t 积的替代方案,其中基本元素是 $(d-2)$ 的 th-order 张量,而不是向量。elt-product 的好处是它可以更好地保留高维结构,并且它可以通过高阶卷积而不是经典 t 产品中的一阶卷积来探索更复杂的交互。从 elt-product 开始,我们开发了新的 tensor-SVD 和低秩张量度量(例如,rank 和 nuclear norm)。配备建议的指标,我们为高阶张量数据提供了一个张量完成模型,并证明了确切的恢复保证。为了利用由此产生的非凸优化问题,我们应用了具有理论收敛保证的乘子交替方向法 (ADMM) 算法。对仿真和真实世界数据(彩色视频、光场图像、光场视频和交通数据)的大量实验结果表明,与最先进的基线模型相比,所提出的模型具有优势。
更新日期:2024-09-04
中文翻译:
从基本元角度重新审视高阶张量奇异值分解
最近,基于张量-张量积 (t-product) 的张量奇异值分解 (t-SVD) 已成为处理三阶张量数据的强大工具。然而,受制于基本元素是 t 积中的纤维(即向量)这一事实,高阶张量数据(即 $d>3$ 阶)通常被展开为三阶张量以满足经典的 t 积设置,从而导致高维结构的破坏。通过重新审视 t 积中的基本元素,我们提出了一种称为基于元素的张量-张量积 (elt-product) 的广义 t 积,作为经典 t 积的替代方案,其中基本元素是 $(d-2)$ 的 th-order 张量,而不是向量。elt-product 的好处是它可以更好地保留高维结构,并且它可以通过高阶卷积而不是经典 t 产品中的一阶卷积来探索更复杂的交互。从 elt-product 开始,我们开发了新的 tensor-SVD 和低秩张量度量(例如,rank 和 nuclear norm)。配备建议的指标,我们为高阶张量数据提供了一个张量完成模型,并证明了确切的恢复保证。为了利用由此产生的非凸优化问题,我们应用了具有理论收敛保证的乘子交替方向法 (ADMM) 算法。对仿真和真实世界数据(彩色视频、光场图像、光场视频和交通数据)的大量实验结果表明,与最先进的基线模型相比,所提出的模型具有优势。