当前位置:
X-MOL 学术
›
Nanophotonics
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Highly uniform silicon nanopatterning with deep-ultraviolet femtosecond pulses
Nanophotonics ( IF 6.5 ) Pub Date : 2024-09-04 , DOI: 10.1515/nanoph-2024-0240 Eduardo Granados 1 , Miguel Martinez-Calderon 1 , Baptiste Groussin 1 , Jean Philippe Colombier 2 , Ibon Santiago 3
Nanophotonics ( IF 6.5 ) Pub Date : 2024-09-04 , DOI: 10.1515/nanoph-2024-0240 Eduardo Granados 1 , Miguel Martinez-Calderon 1 , Baptiste Groussin 1 , Jean Philippe Colombier 2 , Ibon Santiago 3
Affiliation
The prospect of employing nanophotonic methods for controlling photon–electron interactions has ignited substantial interest within the particle accelerator community. Silicon-based integrated dielectric laser acceleration (DLA) has emerged as a viable option by leveraging localized photonic effects to emit, accelerate, and measure electron bunches using exclusively light. Here, using highly regular nanopatterning over large areas while preserving the crystalline structure of silicon is imperative to enhance the efficiency and yield of photon-electron effects. While several established fabrication techniques may be used to produce the required silicon nanostructures, alternative techniques are beneficial to enhance scalability, simplicity and cost-efficiency. In this study, we demonstrate the nano-synthesis of silicon structures over arbitrarily large areas utilizing exclusively deep ultraviolet (DUV) ultrafast laser excitation. This approach delivers highly concentrated electromagnetic energy to the material, thus producing nanostructures with features well beyond the diffraction limit. At the core of our demonstration is the production of silicon laser-induced surface structures with an exceptionally high aspect-ratio -reaching a height of more than 100 nm- for a nanostructure periodicity of 250 nm. This result is attained by exploiting a positive feedback effect on the locally enhanced laser electric field as the surface morphology dynamically emerges, in combination with the material properties at DUV wavelengths. We also observe strong nanopattern hybridization yielding intricate 2D structural features as the onset of amorphization takes place at high laser pulse fluence. This technique offers a simple, yet efficient and attractive approach to produce highly uniform and high aspect ratio silicon nanostructures in the 200–300 nm range.
中文翻译:
利用深紫外飞秒脉冲实现高度均匀的硅纳米图案化
采用纳米光子方法控制光子-电子相互作用的前景引起了粒子加速器界的极大兴趣。硅基集成电介质激光加速 (DLA) 已成为一种可行的选择,它利用局部光子效应仅使用光来发射、加速和测量电子束。在这里,在大面积上使用高度规则的纳米图案,同时保留硅的晶体结构,对于提高光子电子效应的效率和产量至关重要。虽然几种已建立的制造技术可用于生产所需的硅纳米结构,但替代技术有利于增强可扩展性、简单性和成本效率。在这项研究中,我们展示了仅利用深紫外(DUV)超快激光激发在任意大面积上硅结构的纳米合成。这种方法向材料提供高度集中的电磁能,从而产生特征远远超出衍射极限的纳米结构。我们演示的核心是生产硅激光诱导的表面结构,该结构具有极高的纵横比(高度超过 100 nm),纳米结构周期为 250 nm。这一结果是通过利用表面形态动态出现时局部增强激光电场的正反馈效应,并结合 DUV 波长下的材料特性来实现的。我们还观察到,当非晶化发生在高激光脉冲注量下时,强烈的纳米图案杂化会产生复杂的二维结构特征。 该技术提供了一种简单、高效且有吸引力的方法来生产 200-300 nm 范围内高度均匀和高纵横比的硅纳米结构。
更新日期:2024-09-04
中文翻译:
利用深紫外飞秒脉冲实现高度均匀的硅纳米图案化
采用纳米光子方法控制光子-电子相互作用的前景引起了粒子加速器界的极大兴趣。硅基集成电介质激光加速 (DLA) 已成为一种可行的选择,它利用局部光子效应仅使用光来发射、加速和测量电子束。在这里,在大面积上使用高度规则的纳米图案,同时保留硅的晶体结构,对于提高光子电子效应的效率和产量至关重要。虽然几种已建立的制造技术可用于生产所需的硅纳米结构,但替代技术有利于增强可扩展性、简单性和成本效率。在这项研究中,我们展示了仅利用深紫外(DUV)超快激光激发在任意大面积上硅结构的纳米合成。这种方法向材料提供高度集中的电磁能,从而产生特征远远超出衍射极限的纳米结构。我们演示的核心是生产硅激光诱导的表面结构,该结构具有极高的纵横比(高度超过 100 nm),纳米结构周期为 250 nm。这一结果是通过利用表面形态动态出现时局部增强激光电场的正反馈效应,并结合 DUV 波长下的材料特性来实现的。我们还观察到,当非晶化发生在高激光脉冲注量下时,强烈的纳米图案杂化会产生复杂的二维结构特征。 该技术提供了一种简单、高效且有吸引力的方法来生产 200-300 nm 范围内高度均匀和高纵横比的硅纳米结构。