当前位置:
X-MOL 学术
›
Proc. Natl. Acad. Sci. U.S.A.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Topology-driven collective dynamics of nematic colloidal entanglement
Proceedings of the National Academy of Sciences of the United States of America ( IF 9.4 ) Pub Date : 2024-09-04 , DOI: 10.1073/pnas.2402395121 Jinghua Jiang 1 , Oluwafemi Isaac Akomolafe 2 , Xinyu Wang 3 , Zhawure Asilehan 1 , Wentao Tang 3 , Jing Zhang 1 , Zijun Chen 1 , Ruijie Wang 1 , Kamal Ranabhat 2 , Rui Zhang 3 , Chenhui Peng 1
Proceedings of the National Academy of Sciences of the United States of America ( IF 9.4 ) Pub Date : 2024-09-04 , DOI: 10.1073/pnas.2402395121 Jinghua Jiang 1 , Oluwafemi Isaac Akomolafe 2 , Xinyu Wang 3 , Zhawure Asilehan 1 , Wentao Tang 3 , Jing Zhang 1 , Zijun Chen 1 , Ruijie Wang 1 , Kamal Ranabhat 2 , Rui Zhang 3 , Chenhui Peng 1
Affiliation
Entanglement in a soft condensed matter system is enabled in the form of entangled disclination lines by using colloidal particles in nematic liquid crystals. These topological excitations are manifested as colloidal entanglement at equilibrium. How to further utilize nonequilibrium disclination lines to manipulate colloidal entanglement remains a nontrivial and challenging task. In this work, we use experiments and simulations to demonstrate the reconfigurations of nematic colloidal entanglement in light-driven spatiotemporal evolutions of disclination lines. Colloidal entanglement can sense subtle changes in the topological structures of disclination lines and realize chirality conversion. This conversion is manifested as the “domino effect” of the collective rotation of colloids in the disclination lines. By programming the topological patterns and the geometry of the disclination lines, colloidal entanglement can be assembled and split. More remarkably, a double-helix entangled structure can be formed by controlling the changes in the morphology of the disclination lines. Thus, this work will provide opportunities to program colloidal composites for smart materials and micromachines.
中文翻译:
拓扑驱动的向列胶体纠缠集体动力学
通过使用向列液晶中的胶体粒子,可以以纠缠旋错线的形式实现软凝聚态物质系统中的纠缠。这些拓扑激发表现为平衡时的胶体纠缠。如何进一步利用非平衡向错线来操纵胶体纠缠仍然是一项不平凡且具有挑战性的任务。在这项工作中,我们使用实验和模拟来证明向列胶体纠缠在光驱动的向错线时空演化中的重新配置。胶体纠缠可以感知向错线拓扑结构的细微变化,实现手性转换。这种转换表现为向错线中胶体集体旋转的“多米诺骨牌效应”。通过对拓扑图案和向错线的几何形状进行编程,可以组装和分裂胶体纠缠。更值得注意的是,通过控制向错线形态的变化可以形成双螺旋纠缠结构。因此,这项工作将为智能材料和微型机器的胶体复合材料编程提供机会。
更新日期:2024-09-04
中文翻译:
拓扑驱动的向列胶体纠缠集体动力学
通过使用向列液晶中的胶体粒子,可以以纠缠旋错线的形式实现软凝聚态物质系统中的纠缠。这些拓扑激发表现为平衡时的胶体纠缠。如何进一步利用非平衡向错线来操纵胶体纠缠仍然是一项不平凡且具有挑战性的任务。在这项工作中,我们使用实验和模拟来证明向列胶体纠缠在光驱动的向错线时空演化中的重新配置。胶体纠缠可以感知向错线拓扑结构的细微变化,实现手性转换。这种转换表现为向错线中胶体集体旋转的“多米诺骨牌效应”。通过对拓扑图案和向错线的几何形状进行编程,可以组装和分裂胶体纠缠。更值得注意的是,通过控制向错线形态的变化可以形成双螺旋纠缠结构。因此,这项工作将为智能材料和微型机器的胶体复合材料编程提供机会。