当前位置:
X-MOL 学术
›
Macromolecules
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Precise Controlling Microstructure of All-in-One Hybrid Membrane Achieved via Hansen Solubility Parameters after Introducing Nonsolvent Component toward Implantable Energy Storage Device
Macromolecules ( IF 5.1 ) Pub Date : 2024-09-02 , DOI: 10.1021/acs.macromol.4c01201 Meimei Yu 1 , Yuanyou Peng 1 , Xiangya Wang 1 , Lei Zhao 1 , Suting Zhou 1 , Yuxia Zhang 1 , Dongli Guo 1 , Fen Ran 1
Macromolecules ( IF 5.1 ) Pub Date : 2024-09-02 , DOI: 10.1021/acs.macromol.4c01201 Meimei Yu 1 , Yuanyou Peng 1 , Xiangya Wang 1 , Lei Zhao 1 , Suting Zhou 1 , Yuxia Zhang 1 , Dongli Guo 1 , Fen Ran 1
Affiliation
Nearly all implantable energy storage devices adopt a sandwich structure, which cannot guarantee the long-term stability of the device in the human body. The “all-in-one” structure of the device without a physical interface can effectively solve this problem. However, the pore structure of the energy storage device is highly dependent on the matrix material and difficult to regulate flexibly according to demand. In this study, we successfully fabricated “all-in-one” supercapacitors using a non-solvent-induced phase separation technique. By carefully selecting nonsolvent systems based on Hansen solubility parameters and diffusion coefficients, we are able to regulate the phase separation process and achieve precise control over the microstructure of the supercapacitor. By reducing the interaction parameter between the nonsolvent and polymer from 4.0772 to 1.7469, we are able to precisely adjust the microstructure of the “all-in-one” device, transforming it from having finger-like holes with low tortuosity to sponge-like pores. Moreover, this method effectively eliminates the interface between the electrode and the separator. These devices, based on “all-in-one” hybrid membrane, exhibit healthy electrochemical performance, mechanical stability, and excellent biocompatibility in both in vivo and in vitro testing. They can be charged and discharged using blood as an electrolyte, thus having the potential for powering a new generation of long-lived, miniaturized implantable devices.
中文翻译:
在植入式储能装置中引入非溶剂组分后,通过 Hansen 溶解度参数实现一体化杂化膜的精确控制微观结构
几乎所有的植入式储能装置都采用三明治结构,无法保证装置在人体内的长期稳定性。没有物理接口的器件的 “all-in-one” 结构可以有效解决这个问题。然而,储能装置的孔隙结构高度依赖于基体材料,难以根据需求灵活调节。在这项研究中,我们使用非溶剂诱导相分离技术成功制造了“一体化”超级电容器。通过根据 Hansen 溶解度参数和扩散系数精心选择非溶剂体系,我们能够调节相分离过程并实现对超级电容器微观结构的精确控制。通过将非溶剂和聚合物之间的相互作用参数从 4.0772 降低到 1.7469,我们能够精确调整“一体式”器件的微观结构,将其从具有低曲折度的手指状孔转变为海绵状孔隙。此外,这种方法有效地消除了电极和隔膜之间的界面。这些设备基于“一体化”杂化膜,在体内和体外测试中均表现出健康的电化学性能、机械稳定性和出色的生物相容性。它们可以使用血液作为电解质进行充电和放电,因此有可能为新一代长寿命、小型化植入式设备提供动力。
更新日期:2024-09-02
中文翻译:
在植入式储能装置中引入非溶剂组分后,通过 Hansen 溶解度参数实现一体化杂化膜的精确控制微观结构
几乎所有的植入式储能装置都采用三明治结构,无法保证装置在人体内的长期稳定性。没有物理接口的器件的 “all-in-one” 结构可以有效解决这个问题。然而,储能装置的孔隙结构高度依赖于基体材料,难以根据需求灵活调节。在这项研究中,我们使用非溶剂诱导相分离技术成功制造了“一体化”超级电容器。通过根据 Hansen 溶解度参数和扩散系数精心选择非溶剂体系,我们能够调节相分离过程并实现对超级电容器微观结构的精确控制。通过将非溶剂和聚合物之间的相互作用参数从 4.0772 降低到 1.7469,我们能够精确调整“一体式”器件的微观结构,将其从具有低曲折度的手指状孔转变为海绵状孔隙。此外,这种方法有效地消除了电极和隔膜之间的界面。这些设备基于“一体化”杂化膜,在体内和体外测试中均表现出健康的电化学性能、机械稳定性和出色的生物相容性。它们可以使用血液作为电解质进行充电和放电,因此有可能为新一代长寿命、小型化植入式设备提供动力。