当前位置: X-MOL 学术Laser Photonics Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Polarization-Induced Buildup and Switching Mechanisms for Soliton Molecules Composed of Noise-Like-Pulse Transition States
Laser & Photonics Reviews ( IF 9.8 ) Pub Date : 2024-09-03 , DOI: 10.1002/lpor.202401019
Zhi‐Zeng Si 1 , Zhen‐Tao Ju 1 , Long‐Fei Ren 1 , Xue‐Peng Wang 1 , Boris A. Malomed 2, 3 , Chao‐Qing Dai 1
Affiliation  

Buildup and switching mechanisms of solitons in complex nonlinear systems are fundamentally important dynamical regimes. Using a novel strongly nonlinear optical system, including saturable absorber metal-organic framework (MOF)-253@Au and a polarization controller (PC), the work reveals a new buildup scenario for “soliton molecules (SMs)”, which includes a long-duration stage dominated by the emergence of transient noise-like pulses (NLPs) modes to withstand strong disturbances arising from “turbulence” and extreme nonlinearity in the optical cavity. The switching between SMs and NLPs is controlled by the cavity polarization state. The switching involves the spectral collapse, following spectral oscillations with a variable period, and self-organization of NLPs, following energy overshoot. This switching mechanism applies to various patterns with single, paired, and clustered pulses. In the multi-pulses stage, XPM (cross-phase-modulation)-induced interactions between solitons facilitate a specific mode of energy exchange between them, proportional to interaction duration, ensuring pulse stability during and after state transitions. Systematic simulations reveal the effects of the PC's rotation angle and intra-cavity nonlinearity on the periodic phase transitions between the different soliton states and accurately reproduce the experimentally observed buildup and switching mechanisms. These findings can enhance the fundamental study and points to potential uses in designing information encoding systems.

中文翻译:


由类噪声脉冲过渡态组成的孤子分子的偏振诱导积累和切换机制



复杂非线性系统中孤子的形成和切换机制是极其重要的动力学机制。该工作使用新型强非线性光学系统,包括可饱和吸收金属有机框架(MOF)-253@Au和偏振控制器(PC),揭示了“孤子分子(SM)”的新构建场景,其中包括长-持续时间阶段以瞬态类噪声脉冲(NLP)模式的出现为主,以承受光学腔中“湍流”和极端非线性引起的强烈干扰。 SM 和 NLP 之间的切换由腔偏振态控制。这种切换涉及频谱崩溃(跟随可变周期的频谱振荡)以及 NLP 自组织(跟随能量超调)。这种切换机制适用于具有单脉冲、成对脉冲和簇脉冲的各种模式。在多脉冲阶段,XPM(交叉相位调制)引起的孤子之间的相互作用促进了孤子之间特定的能量交换模式,与相互作用持续时间成正比,确保了状态转换期间和之后的脉冲稳定性。系统仿真揭示了 PC 的旋转角度和腔内非线性对不同孤子状态之间的周期性相变的影响,并准确地再现了实验观察到的累积和切换机制。这些发现可以加强基础研究,并指出设计信息编码系统的潜在用途。
更新日期:2024-09-08
down
wechat
bug