当前位置: X-MOL 学术ACS Photonics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Light-Stimulated Artificial Synapses with Accelerating Photopic Adaption Based on III-Nitride Heterojunction Transistor
ACS Photonics ( IF 6.5 ) Pub Date : 2024-09-04 , DOI: 10.1021/acsphotonics.4c01038
Jiabin Yan 1 , Zhihang Sun 1 , Li Fang 1 , Yiqun Yan 1 , Zheng Shi 1 , Fan Shi 1 , Chengxiang Jiang 1 , Hoi Wai Choi 2 , Hiroshi Amano 3 , Yuhuai Liu 4 , Yongjin Wang 1
Affiliation  

Neuromorphic computing, inspired by biological synapses, has emerged as a pivotal approach to overcome the limitations of von Neumann architecture. In this work, we employ a three-terminal III-nitride metal-oxide-semiconductor field-effect transistor (MOSFET) structure based on the GaN-on-silicon platform, characterized by ultralow power consumption, to emulate artificial synapses through light stimulation. Remarkably, our device exhibits a minimal power consumption of 7 fJ per synaptic event, surpassing that of biological synapses (∼10 fJ). Notably, we observe that the paired pulse facilitation (PPF) index can be modulated by the external light intensity, pulse width, and light pulse interval. By manipulating the light intensity and pulse width, we achieve a PPF index exceeding 300% in our device. Furthermore, our devices demonstrate gate-tunable synaptic plasticity, enabling electric/light cooperative control and increasing the tuning freedom. Finally, acceleration of photopic adaption and a 91.28% handwritten digit recognition accuracy are achieved, which provide strong support in potential visual sensory applications.

中文翻译:


基于 III 氮化物异质结晶体管的光刺激人工突触与加速光视觉适应



受生物突触启发的神经形态计算已成为克服冯·诺依曼架构局限性的关键方法。在这项工作中,我们采用基于 GaN-on-Silicon 平台的三端子 III 氮化物金属氧化物半导体场效应晶体管 (MOSFET) 结构,其特点是超低功耗,通过光刺激模拟人工突触。值得注意的是,我们的设备每个突触事件的最小功耗为 7 fJ,超过了生物突触 (∼10 fJ)。值得注意的是,我们观察到配对脉冲便利化 (PPF) 指数可以由外部光强度、脉冲宽度和光脉冲间隔调制。通过控制光强度和脉冲宽度,我们在设备中实现了超过 300% 的 PPF 指数。此外,我们的设备展示了门可调突触可塑性,可实现电/光协同控制并增加调谐自由度。最后,实现了明应适应的加速和91.28%的手写数字识别准确率,为潜在的视觉感官应用提供了有力的支持。
更新日期:2024-09-04
down
wechat
bug