当前位置:
X-MOL 学术
›
ACS Photonics
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Multiwavelength Temperature-Controlled Phase Modulator Based on Cs4PbBr6/CsPbBr3 Perovskite Crystals
ACS Photonics ( IF 6.5 ) Pub Date : 2024-09-04 , DOI: 10.1021/acsphotonics.4c01151 Xiaoting Wang 1 , Qianxi Yin 1 , Rongrong Xu 1 , Yu Gu 1 , Xianliang Huang 1, 2 , Mulin Li 1 , Teng Ma 1, 2 , Ziyi Chen 1, 2 , Jun Chen 1 , Haibo Zeng 1
ACS Photonics ( IF 6.5 ) Pub Date : 2024-09-04 , DOI: 10.1021/acsphotonics.4c01151 Xiaoting Wang 1 , Qianxi Yin 1 , Rongrong Xu 1 , Yu Gu 1 , Xianliang Huang 1, 2 , Mulin Li 1 , Teng Ma 1, 2 , Ziyi Chen 1, 2 , Jun Chen 1 , Haibo Zeng 1
Affiliation
Birefringent crystals have the ability to modulate polarized light, which has important applications in the field of optoelectronics. Waveplates are important devices in polarization optics to modulate the polarization and phase delay of light over a wide band of wavelength. However, conventional designs of half-wave plates and quarter-wave plates involve multiple birefringent crystals, and the fabrication process is complex and costly. Here, we report the discovery of a multiwavelength (532–785 nm) temperature-controlled phase modulator based on Cs4PbBr6/CsPbBr3 perovskite crystals. It is the crystal lattice expansion that is causing the variation of the birefringence factor of Cs4PbBr6/CsPbBr3 through observing crystal optical properties. The transmitted 633 nm light can be temperature-modulated to achieve the switching of optical polarization states between circularly polarized and linearly polarized states, revealing that the same crystal can switch between the functions of half-wave plates and quarter-wave plates. Other wavelengths of transmitted light can also change optical polarization states through temperature control. Given the versatility of halide perovskite-based crystals, Cs4PbBr6/CsPbBr3 crystals offer a promising approach for producing waveplates and other optical devices at a lower cost.
中文翻译:
基于Cs4PbBr6/CsPbBr3钙钛矿晶体的多波长温控相位调制器
双折射晶体具有调制偏振光的能力,在光电子领域有重要的应用。波片是偏振光学中的重要器件,可在较宽的波长范围内调制光的偏振和相位延迟。然而,传统的半波片和四分之一波片的设计涉及多个双折射晶体,制造工艺复杂且成本高昂。在这里,我们报告了基于Cs 4 PbBr 6 /CsPbBr 3钙钛矿晶体的多波长(532-785 nm)温控相位调制器的发现。通过观察晶体光学性质,发现Cs 4 PbBr 6 /CsPbBr 3双折射率的变化是由晶格膨胀引起的。可以对透射的633 nm光进行温度调制,实现光学偏振状态在圆偏振和线偏振状态之间的切换,揭示了同一晶体可以在半波片和四分之一波片的功能之间切换。其他波长的透射光也可以通过温度控制来改变光学偏振状态。鉴于卤化物钙钛矿晶体的多功能性,Cs 4 PbBr 6 /CsPbBr 3晶体为以较低的成本生产波片和其他光学器件提供了一种有前途的方法。
更新日期:2024-09-04
中文翻译:
基于Cs4PbBr6/CsPbBr3钙钛矿晶体的多波长温控相位调制器
双折射晶体具有调制偏振光的能力,在光电子领域有重要的应用。波片是偏振光学中的重要器件,可在较宽的波长范围内调制光的偏振和相位延迟。然而,传统的半波片和四分之一波片的设计涉及多个双折射晶体,制造工艺复杂且成本高昂。在这里,我们报告了基于Cs 4 PbBr 6 /CsPbBr 3钙钛矿晶体的多波长(532-785 nm)温控相位调制器的发现。通过观察晶体光学性质,发现Cs 4 PbBr 6 /CsPbBr 3双折射率的变化是由晶格膨胀引起的。可以对透射的633 nm光进行温度调制,实现光学偏振状态在圆偏振和线偏振状态之间的切换,揭示了同一晶体可以在半波片和四分之一波片的功能之间切换。其他波长的透射光也可以通过温度控制来改变光学偏振状态。鉴于卤化物钙钛矿晶体的多功能性,Cs 4 PbBr 6 /CsPbBr 3晶体为以较低的成本生产波片和其他光学器件提供了一种有前途的方法。