当前位置:
X-MOL 学术
›
ACS Photonics
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Inverse-Designed 3D Laser Nanoprinted Phase Masks to Extend the Depth of Field of Imaging Systems
ACS Photonics ( IF 6.5 ) Pub Date : 2024-09-03 , DOI: 10.1021/acsphotonics.4c00953 Thomas Jebb Sturges 1 , Markus Nyman 2 , Sebastian Kalt 3 , Kauri Pälsi 4 , Panu Hilden 4 , Martin Wegener 2, 3 , Carsten Rockstuhl 1, 2 , Andriy Shevchenko 4
ACS Photonics ( IF 6.5 ) Pub Date : 2024-09-03 , DOI: 10.1021/acsphotonics.4c00953 Thomas Jebb Sturges 1 , Markus Nyman 2 , Sebastian Kalt 3 , Kauri Pälsi 4 , Panu Hilden 4 , Martin Wegener 2, 3 , Carsten Rockstuhl 1, 2 , Andriy Shevchenko 4
Affiliation
In optical imaging, achieving high resolution often comes at the expense of a shallow depth of field. This means that when using a standard microscope, any minor movement of the object along the optical axis can cause the image to become blurry. To address this issue, we exploit inverse design techniques to optimize a phase mask which, when inserted into a standard microscope, extends the depth of field by a factor of approximately four without compromising the microscope’s resolution. Differentiable Fourier optics simulations allow us to rapidly iterate toward an optimized design in a hybrid fashion, starting with gradient-free Bayesian optimization and proceeding to a local gradient-based optimization. To fabricate the device, a commercial two-photon 3D laser nanoprinter is used, in combination with a two-step precompensation routine, providing high fabrication speed and much better than subwavelength accuracy. We find excellent agreement between our numerical predictions and the measurements upon integrating the phase mask into a microscope and optically characterizing selected samples. The phase mask enables us to conduct simultaneous multiplane imaging of objects separated by distances that cannot be achieved with the original microscope.
中文翻译:
逆向设计的 3D 激光纳米印刷相位掩模可扩展成像系统的景深
在光学成像中,实现高分辨率通常是以浅景深为代价的。这意味着当使用标准显微镜时,物体沿光轴的任何微小移动都会导致图像变得模糊。为了解决这个问题,我们利用逆向设计技术来优化相位掩模,当将其插入标准显微镜时,可将景深扩大约四倍,而不会影响显微镜的分辨率。可微分傅立叶光学模拟使我们能够以混合方式快速迭代优化设计,从无梯度贝叶斯优化开始,然后进行基于局部梯度的优化。为了制造该设备,使用了商用双光子 3D 激光纳米打印机,并结合两步预补偿程序,可提供高制造速度和远优于亚波长的精度。将相位掩模板集成到显微镜中并对选定的样品进行光学表征后,我们发现数值预测与测量结果非常一致。相位掩模板使我们能够对相距一定距离的物体进行同时多平面成像,这是原始显微镜无法实现的。
更新日期:2024-09-03
中文翻译:
逆向设计的 3D 激光纳米印刷相位掩模可扩展成像系统的景深
在光学成像中,实现高分辨率通常是以浅景深为代价的。这意味着当使用标准显微镜时,物体沿光轴的任何微小移动都会导致图像变得模糊。为了解决这个问题,我们利用逆向设计技术来优化相位掩模,当将其插入标准显微镜时,可将景深扩大约四倍,而不会影响显微镜的分辨率。可微分傅立叶光学模拟使我们能够以混合方式快速迭代优化设计,从无梯度贝叶斯优化开始,然后进行基于局部梯度的优化。为了制造该设备,使用了商用双光子 3D 激光纳米打印机,并结合两步预补偿程序,可提供高制造速度和远优于亚波长的精度。将相位掩模板集成到显微镜中并对选定的样品进行光学表征后,我们发现数值预测与测量结果非常一致。相位掩模板使我们能够对相距一定距离的物体进行同时多平面成像,这是原始显微镜无法实现的。