当前位置:
X-MOL 学术
›
ACS Energy Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Microstructure Design of Electrolytes for High-Energy-Density Aqueous Batteries
ACS Energy Letters ( IF 19.3 ) Pub Date : 2024-09-03 , DOI: 10.1021/acsenergylett.4c02181 Canfu Zhang 1 , Binbin Chen 1, 2, 3 , Qinlong Chen 1 , Changhe Tian 1 , Mengqi Zhou 1 , Xuesong Zhao 1 , Zirui Li 4, 5 , Liwu Fan 4, 5 , Xueqian Kong 6 , Huilin Pan 1, 5
ACS Energy Letters ( IF 19.3 ) Pub Date : 2024-09-03 , DOI: 10.1021/acsenergylett.4c02181 Canfu Zhang 1 , Binbin Chen 1, 2, 3 , Qinlong Chen 1 , Changhe Tian 1 , Mengqi Zhou 1 , Xuesong Zhao 1 , Zirui Li 4, 5 , Liwu Fan 4, 5 , Xueqian Kong 6 , Huilin Pan 1, 5
Affiliation
Strengthening water (H2O) interaction is a universal strategy for reducing H2O reactivity, yet often at the expense of kinetics. Here, we unveiled the controllable modulation of molecular structures in aqueous electrolytes and their tailorable electrochemical performance in high-energy aqueous batteries. The H-bond properties and special distributions are identified as crucial parameters to decouple the electrochemical stability and the transport properties of Li+ in the aqueous-based electrolytes. It is found that the mildly solvating ethylene glycol diethyl ether (DEE) is capable of balancing both high-energy Li-ion batteries with a greatly extended electrochemical window of 1.4–5.2 V vs. Li+/Li and high ionic conductivity of 7.2 mS cm–1 at room temperature with a low salt concentration (1.57 mol/L). LiMn2O4||Li4Ti5O12 aqueous cells deliver outstanding cycling performance over 300 cycles at 1C. One Ah pouch cell is demonstrated with a high energy density of 76.76 Wh kg–1 at 0.2C and stable cycling performance at room temperature and a low temperature of −20 °C. This work provides new insights and strategies to design advanced electrolytes for rechargeable batteries.
中文翻译:
高能量密度水系电池电解质的微观结构设计
加强水 (H 2 O) 相互作用是降低 H 2 O 反应性的通用策略,但通常会牺牲动力学。在这里,我们揭示了水性电解质中分子结构的可控调节及其在高能水性电池中的可定制电化学性能。氢键性质和特殊分布被认为是解耦水基电解质中电化学稳定性和Li +传输性质的关键参数。研究发现,温和溶剂化的乙二醇二乙醚 (DEE) 能够平衡高能锂离子电池,其电化学窗口大大扩展为 1.4–5.2 V vs. Li + /Li,离子电导率高达 7.2 mS cm –1室温下低盐浓度 (1.57 mol/L)。 LiMn 2 O 4 ||Li 4 Ti 5 O 12水系电池在 1C 下可提供超过 300 次循环的出色循环性能。 1 Ah 软包电池在 0.2C 下具有 76.76 Wh kg –1的高能量密度,并且在室温和 -20 °C 的低温下具有稳定的循环性能。这项工作为设计可充电电池的先进电解质提供了新的见解和策略。
更新日期:2024-09-03
中文翻译:
高能量密度水系电池电解质的微观结构设计
加强水 (H 2 O) 相互作用是降低 H 2 O 反应性的通用策略,但通常会牺牲动力学。在这里,我们揭示了水性电解质中分子结构的可控调节及其在高能水性电池中的可定制电化学性能。氢键性质和特殊分布被认为是解耦水基电解质中电化学稳定性和Li +传输性质的关键参数。研究发现,温和溶剂化的乙二醇二乙醚 (DEE) 能够平衡高能锂离子电池,其电化学窗口大大扩展为 1.4–5.2 V vs. Li + /Li,离子电导率高达 7.2 mS cm –1室温下低盐浓度 (1.57 mol/L)。 LiMn 2 O 4 ||Li 4 Ti 5 O 12水系电池在 1C 下可提供超过 300 次循环的出色循环性能。 1 Ah 软包电池在 0.2C 下具有 76.76 Wh kg –1的高能量密度,并且在室温和 -20 °C 的低温下具有稳定的循环性能。这项工作为设计可充电电池的先进电解质提供了新的见解和策略。