当前位置:
X-MOL 学术
›
J. Chem. Theory Comput.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Beyond Catalysts: Exploring Discharge Product Growth and Intrinsic Overpotential in Lithium–Oxygen Batteries
Journal of Chemical Theory and Computation ( IF 5.7 ) Pub Date : 2024-09-03 , DOI: 10.1021/acs.jctc.4c00789 Zhengxuan Yin 1 , Lixin Xiong 1 , Neil Qiang Su 1
Journal of Chemical Theory and Computation ( IF 5.7 ) Pub Date : 2024-09-03 , DOI: 10.1021/acs.jctc.4c00789 Zhengxuan Yin 1 , Lixin Xiong 1 , Neil Qiang Su 1
Affiliation
The lithium–oxygen (Li–O2) battery, renowned for its exceptionally high theoretical energy density, is poised to revolutionize next-generation energy storage systems. However, its practical application depends on overcoming several challenges, particularly the high cathode overpotential, which significantly diminishes the battery’s energy efficiency and durability. This study delves into the interactions at the cathode surface during oxygen reduction and evolution reactions (ORR/OER), extending the analysis beyond the initial reaction stages to encompass the extensive charge–discharge process. We introduce and define the concepts of intrinsic equilibrium potential and intrinsic overpotential, demonstrating that these critical parameters are predominantly influenced by the growth of discharge products, rather than the catalysts, thereby underscoring the inherent properties of the battery. This shift in focus from merely enhancing cathode catalysts to understanding and leveraging the intrinsic characteristics of the battery discharge process opens new avenues for optimizing and enhancing the performance of large-scale Li–O2 batteries. Furthermore, our findings indicate potential broader applications to other metal–oxygen systems, paving the way for the design of high-capacity, high-efficiency energy storage technologies.
中文翻译:
超越催化剂:探索锂氧电池的放电产物增长和固有过电势
锂氧(Li-O 2 )电池以其极高的理论能量密度而闻名,有望彻底改变下一代储能系统。然而,其实际应用取决于克服几个挑战,特别是高阴极过电势,这显着降低了电池的能源效率和耐用性。这项研究深入研究了氧还原和析出反应 (ORR/OER) 过程中阴极表面的相互作用,将分析扩展到初始反应阶段之外,涵盖广泛的充放电过程。我们引入并定义了固有平衡电位和固有过电位的概念,证明这些关键参数主要受放电产物生长的影响,而不是催化剂的影响,从而强调了电池的固有特性。这种重点从仅仅增强阴极催化剂转向理解和利用电池放电过程的内在特征,为优化和增强大规模Li-O 2电池的性能开辟了新途径。此外,我们的研究结果表明其在其他金属-氧系统中具有更广泛的潜在应用,为高容量、高效率储能技术的设计铺平了道路。
更新日期:2024-09-03
中文翻译:
超越催化剂:探索锂氧电池的放电产物增长和固有过电势
锂氧(Li-O 2 )电池以其极高的理论能量密度而闻名,有望彻底改变下一代储能系统。然而,其实际应用取决于克服几个挑战,特别是高阴极过电势,这显着降低了电池的能源效率和耐用性。这项研究深入研究了氧还原和析出反应 (ORR/OER) 过程中阴极表面的相互作用,将分析扩展到初始反应阶段之外,涵盖广泛的充放电过程。我们引入并定义了固有平衡电位和固有过电位的概念,证明这些关键参数主要受放电产物生长的影响,而不是催化剂的影响,从而强调了电池的固有特性。这种重点从仅仅增强阴极催化剂转向理解和利用电池放电过程的内在特征,为优化和增强大规模Li-O 2电池的性能开辟了新途径。此外,我们的研究结果表明其在其他金属-氧系统中具有更广泛的潜在应用,为高容量、高效率储能技术的设计铺平了道路。