Nature ( IF 50.5 ) Pub Date : 2024-09-04 , DOI: 10.1038/s41586-024-07914-y L Chen 1 , Y Sun 1 , S Mankovsky 2 , T N G Meier 1 , M Kronseder 3 , C Sun 4, 5 , A Orekhov 4 , H Ebert 2 , D Weiss 3 , C H Back 1, 6, 7
Exploring new strategies to manipulate the order parameter of magnetic materials by electrical means is of great importance not only for advancing our understanding of fundamental magnetism but also for unlocking potential applications. A well-established concept uses gate voltages to control magnetic properties by modulating the carrier population in a capacitor structure1,2,3,4,5. Here we show that, in Pt/Al/Fe/GaAs(001) multilayers, the application of an in-plane charge current in Pt leads to a shift in the ferromagnetic resonance field depending on the microwave frequency when the Fe film is sufficiently thin. The experimental observation is interpreted as a current-induced modification of the magnetocrystalline anisotropy ΔHA of Fe. We show that (1) ΔHA decreases with increasing Fe film thickness and is connected to the damping-like torque; and (2) ΔHA depends not only on the polarity of charge current but also on the magnetization direction, that is, ΔHA has an opposite sign when the magnetization direction is reversed. The symmetry of the modification is consistent with a current-induced spin6,7,8 and/or orbit9,10,11,12,13 accumulation, which, respectively, act on the spin and/or orbit component of the magnetization. In this study, as Pt is regarded as a typical spin current source6,14, the spin current can play a dominant part. The control of magnetism by a spin current results from the modified exchange splitting of the majority and minority spin bands, providing functionality that was previously unknown and could be useful in advanced spintronic devices.
中文翻译:
角动量流磁控制的特征
探索通过电手段操纵磁性材料有序参数的新策略不仅对于增进我们对基本磁性的理解而且对于解锁潜在应用都非常重要。一个成熟的概念是使用栅极电压通过调制电容器结构中的载流子数量来控制磁特性1,2,3,4,5 。在这里,我们表明,在 Pt/Al/Fe/GaAs(001) 多层中,当 Fe 薄膜足够薄时,在 Pt 中施加面内充电电流会导致铁磁共振场发生变化,具体取决于微波频率。实验观察结果被解释为电流引起的 Fe 磁晶各向异性 Δ H A的改变。我们表明 (1) Δ H A随着 Fe 膜厚度的增加而减小,并且与类阻尼扭矩有关; (2) ΔH A不仅取决于充电电流的极性,还取决于磁化方向,即磁化方向相反时ΔH A 的符号相反。修饰的对称性与电流引起的自旋6、7、8和/或轨道9、10、11、12、13累积一致,其分别作用于磁化的自旋和/或轨道分量。在本研究中,由于Pt被视为典型的自旋电流源6,14 ,因此自旋电流可以发挥主导作用。自旋电流对磁性的控制是由大多数和少数自旋带的交换分裂的修改产生的,提供了以前未知的功能,并且可能在先进的自旋电子器件中有用。