当前位置:
X-MOL 学术
›
Sociological Methods & Research
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Dynamics of Health Expectancy: An Introduction to the Multiple Multistate Method (MMM)
Sociological Methods & Research ( IF 6.5 ) Pub Date : 2024-09-03 , DOI: 10.1177/00491241241268775 Tianyu Shen 1 , Collin F. Payne 1, 2 , Maria Jahromi 3
Sociological Methods & Research ( IF 6.5 ) Pub Date : 2024-09-03 , DOI: 10.1177/00491241241268775 Tianyu Shen 1 , Collin F. Payne 1, 2 , Maria Jahromi 3
Affiliation
Many studies have compared individual measures of health expectancy across older populations by time-invariant characteristics. However, very few have included time-varying variables when calculating health expectancy. Even among older adults, socioeconomic and demographic characteristics are likely to change over the life course, and these changes may have substantial implications for health outcomes. This paper proposes a multiple multistate method (MMM) that situates the multistate model within the broader family of vector autoregressive models. Our approach allows the incorporation of the coevolution of multiple life course factors and provides a flexible yet simple way to model two or more time-varying variables with the multistate model. We demonstrate the MMM in two empirical applications, showing the flexibility of the approach to explore health expectancies with complex state spaces.
中文翻译:
健康预期动态:多重多状态方法 (MMM) 简介
许多研究通过时不变特征比较了老年人群健康预期的个体测量值。然而,很少有人在计算健康预期时纳入随时间变化的变量。即使在老年人中,社会经济和人口特征也可能在生命历程中发生变化,这些变化可能对健康结果产生重大影响。本文提出了一种多重多状态方法 (MMM),将多状态模型置于更广泛的向量自回归模型家族中。我们的方法允许结合多个生命过程因素的共同进化,并提供一种灵活而简单的方法来使用多状态模型对两个或多个时变变量进行建模。我们在两个实证应用中演示了 MMM,展示了该方法在复杂状态空间中探索健康预期的灵活性。
更新日期:2024-09-03
中文翻译:
健康预期动态:多重多状态方法 (MMM) 简介
许多研究通过时不变特征比较了老年人群健康预期的个体测量值。然而,很少有人在计算健康预期时纳入随时间变化的变量。即使在老年人中,社会经济和人口特征也可能在生命历程中发生变化,这些变化可能对健康结果产生重大影响。本文提出了一种多重多状态方法 (MMM),将多状态模型置于更广泛的向量自回归模型家族中。我们的方法允许结合多个生命过程因素的共同进化,并提供一种灵活而简单的方法来使用多状态模型对两个或多个时变变量进行建模。我们在两个实证应用中演示了 MMM,展示了该方法在复杂状态空间中探索健康预期的灵活性。