当前位置: X-MOL 学术Radiology › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Use of Pretreatment Perfusion MRI-based Intratumoral Heterogeneity to Predict Pathologic Response of Triple-Negative Breast Cancer to Neoadjuvant Chemoimmunotherapy.
Radiology ( IF 12.1 ) Pub Date : 2024-09-01 , DOI: 10.1148/radiol.240575
Toulsie Ramtohul 1 , Victoire Lepagney 1 , Claire Bonneau 1 , Maxime Jin 1 , Emmanuelle Menet 1 , Juliette Sauge 1 , Enora Laas 1 , Emanuela Romano 1 , Diana Bello-Roufai 1 , Fatima Mechta-Grigoriou 1 , Anne Vincent Salomon 1 , François-Clément Bidard 1 , Adriana Langer 1 , Caroline Malhaire 1 , Luc Cabel 1 , Hervé J Brisse 1 , Anne Tardivon 1
Affiliation  

Background Neoadjuvant chemoimmunotherapy (NACI) has significantly increased the rate of pathologic complete response (pCR) in patients with early-stage triple-negative breast cancer (TNBC), although predictors of response to this regimen have not been identified. Purpose To investigate pretreatment perfusion MRI-based radiomics as a predictive marker for pCR in patients with TNBC undergoing NACI. Materials and Methods This prospective study enrolled women with early-stage TNBC who underwent NACI at two different centers from August 2021 to July 2023. Pretreatment dynamic contrast-enhanced MRI scans obtained using scanners from multiple vendors were analyzed using the Tofts model to segment tumors and analyze pharmacokinetic parameters. Radiomics features were extracted from the rate constant for contrast agent plasma-to-interstitial transfer (or Ktrans), volume fraction of extravascular and extracellular space (Ve), and maximum contrast agent uptake rate (Slopemax) maps and analyzed using unsupervised correlation and least absolute shrinkage and selector operator, or LASSO, to develop a radiomics score. Score effectiveness was assessed using the area under the receiver operating characteristic curve (AUC), and multivariable logistic regression was used to develop a multimodal nomogram for enhanced prediction. The discrimination, calibration, and clinical utility of the nomogram were evaluated in an external test set. Results The training set included 112 female participants from center 1 (mean age, 52 years ± 11 [SD]), and the external test set included 83 female participants from center 2 (mean age, 47 years ± 11). The radiomics score demonstrated an AUC of 0.80 (95% CI: 0.70, 0.89) for predicting pCR. A nomogram incorporating the radiomics score, grade, and Ki-67 yielded an AUC of 0.86 (95% CI: 0.78, 0.94) in the test set. Associations were found between higher radiomics score (>0.25) and tumor size (P < .001), washout enhancement (P = .01), androgen receptor expression (P = .009), and programmed death ligand 1 expression (P = .01), demonstrating a correlation with tumor immune environment in participants with TNBC. Conclusion A radiomics score derived from pharmacokinetic parameters at pretreatment dynamic contrast-enhanced MRI exhibited good performance for predicting pCR in participants with TNBC undergoing NACI, and could potentially be used to enhance clinical decision making. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Rauch in this issue.

中文翻译:


使用基于治疗前灌注 MRI 的瘤内异质性预测三阴性乳腺癌对新辅助化学免疫治疗的病理反应。



背景 新辅助化学免疫治疗 (NACI) 显着提高了早期三阴性乳腺癌 (TNBC) 患者的病理完全缓解 (pCR) 率,尽管尚未确定该方案缓解的预测因素。目的 探讨基于治疗前灌注 MRI 的放射组学作为接受 NACI 的 TNBC 患者 pCR 的预测标志物。材分析药代动力学参数。从造影剂血浆至间质转移(或 Ktrans)的速率常数、血管外和细胞外空间的体积分数(Ve)以及最大造影剂摄取率(Slopemax)图中提取放射组学特征,并使用无监督相关性和最小化分析绝对收缩和选择算子(LASSO),用于制定放射组学评分。使用受试者工作特征曲线 (AUC) 下的面积评估评分有效性,并使用多变量逻辑回归来开发多模态列线图以增强预测。在外部测试集中评估列线图的辨别力、校准和临床实用性。结果 训练集包括来自中心 1 的 112 名女性参与者(平均年龄,52 岁±11 [SD]),外部测试集包括来自中心 2 的 83 名女性参与者(平均年龄,47 岁±11)。放射组学评分显示预测 pCR 的 AUC 为 0.80(95% CI:0.70,0.89)。 结合放射组学评分、等级和 Ki-67 的列线图在测试集中产生的 AUC 为 0.86(95% CI:0.78,0.94)。较高的放射组学评分 (>0.25) 与肿瘤大小 (P < .001)、冲洗增强 (P = .01)、雄激素受体表达 (P = .009) 和程序性死亡配体 1 表达之间存在关联( P = .01),证明了 TNBC 参与者与肿瘤免疫环境的相关性。结论 根据治疗前动态对比增强 MRI 的药代动力学参数得出的放射组学评分在预测接受 NACI 的 TNBC 参与者的 pCR 方面表现出良好的性能,并且有可能用于增强临床决策。 © RSNA,2024 本文提供补充材料。另请参阅本期 Rauch 的社论。
更新日期:2024-09-01
down
wechat
bug