当前位置: X-MOL 学术Bioresource Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Inverse design of chemoenzymatic epoxidation of soyabean oil through artificial intelligence-driven experimental approach
Bioresource Technology ( IF 9.7 ) Pub Date : 2024-09-01 , DOI: 10.1016/j.biortech.2024.131405
Nipon Sarmah 1 , Vazida Mehtab 2 , Kashmiri Borah 3 , Aruna Palanisamy 4 , Rajarathinam Parthasarathy 5 , Sumana Chenna 2
Affiliation  

This paper presents an inverse design methodology that utilizes artificial intelligence (AI)-driven experiments to optimize the chemoenzymatic epoxidation of soyabean oil using hydrogen peroxide and lipase (Novozym 435). First, experiments are conducted using a systematic 3-level, 5-factor Box-Behnken design to explore the effect of input parameters on oxirane oxygen content (OOC (%)). Based on these experiments, various AI models are trained, with the support vector regression (SVR) model being found to be the most accurate. SVR is then used as a fitness function in particle swarm optimization, and the suggested optimal conditions, upon experimental validation, resulted in a maximum OOC of 7.19 % (∼98.5 % relative conversion of oil to epoxy). The results demonstrate the superiority of the proposed approach over existing methods. This framework offers a general intensified process optimization strategy with minimal resource utilization that can be applied to any other process.

中文翻译:


基于人工智能驱动实验方法的大豆油化学酶环氧化逆向设计



本文提出了一种逆向设计方法,该方法利用人工智能 (AI) 驱动的实验来优化使用过氧化氢和脂肪酶 (Novozym 435) 的大豆油的化学酶环氧化。首先,使用系统的 3 水平、5 因子 Box-Behnken 设计进行实验,以探索输入参数对环氧乙烷氧含量 (OOC (%) 的影响。基于这些实验,训练了各种 AI 模型,其中支持向量回归 (SVR) 模型被发现是最准确的。然后将 SVR 用作粒子群优化中的适应度函数,建议的最佳条件经过实验验证,最大 OOC 为 7.19 %(油与环氧树脂的相对转化率 ∼98.5 %)。结果表明,所提出的方法优于现有方法。该框架提供了一种通用的强化流程优化策略,具有最小的资源利用率,可应用于任何其他流程。
更新日期:2024-09-01
down
wechat
bug